Registration for the 2007 Illinois Crop Protection Technology Conference and the University of Illinois Corn & Soybean Classics Will Be Available Soon

Our IPM Web master will soon have ready online registration for the 2007 Illinois Crop Protection Technology Conference and the University of Illinois Corn & Soybean Classics. We will announce their availability in a special “Alert” in the Bulletin in the near future. For future reference, you can bookmark the Web site: www.ipm.uiuc.edu/conferences.

To pique your interest, here is a synopsis of the conference:

Wednesday, January 3

- Opening Session (a.m.)—Lessons from a “Quiet” 2006 Season: What Lies Ahead?
- Symposium A (p.m.)—Healthy Plants: Is Your Disease Threshold Damaged?
- Symposium B (p.m.)—Seed and Soils: Some Basics of Crop Agronomics
- Symposium C (p.m.)—Wheat Management in Illinois

Thursday, January 4

- Symposium D (a.m.)—Seasons of Change (glyphosate-resistant weeds)
- Symposium E (a.m.)—Insect Management Issues: Did Events of 2006 Set Us Up for 2007?
- Symposium F (a.m.)—The Influence of Organic Markets and Urban Perspectives on Agrichemical Applications
- Closing Session (12:00 noon, light lunch served)—Strengthening the Partnership with the Illinois Agribusiness Community

The symposia are all repeated on the days indicated. More information about the conference (including speakers and CEUs for Certified Crop Advisors) is forthcoming.

For the 2007 Corn & Soybean Classics, here is what you can expect to hear:

- Changing Crop Demand: Implications for Prices, Production, and Policy (Darrel Good)
- The Truth About Continuous Corn (Emerson Nafziger)
- Farm-Level Changes Resulting from a Switch to More Corn (Gary Schnitkey)
- Fall-Applied MAP and DAP Nitrogen: How Much Is There Next Spring? (Fabián Fernandez)
- Resistance to SCN Resistance (Terry Niblack)
- Preparing for Soybean Aphids in 2007 (Kevin Steffey)
• Waterhemp—What Have We Learned? (Aaron Hager)
• The Fungi Among Us: Why the Rot, and Where’s the Rust? (Suzanne Bissonnette)
• Bt, ECB, ISTs, WCR, IRM, IPM: Sorting It All Out (Mike Gray)

Remember, the Classics will be held in the following cities on the following dates:

• January 16, Springfield
• January 17, Collinsville
• January 18, Mt. Vernon
• January 23, Bloomington
• January 24, Malta
• January 25, Moline

We hope to see you at one or both of these annual educational events. If you have any questions about either program, please don’t hesitate to contact me. — Kevin Steffey

North Central Weed Science Society Meeting

Weed control practitioners are continually looking for dependable sources of information to assist their quest to better understand the biology and management of weed species. While technologies have evolved and equipment has become more sophisticated, weeds still persist in areas where they aren’t always welcome, including row crops, vegetable crops, pastures, and roadside areas. Some suggested recent advances in technology would make weed management simpler (dare we say easier?), yet time and again we learn that “biologically adaptable” organisms continue to frustrate our best efforts at simplified management.

We encourage those who are interested in the most current information about weeds and their management to attend the 61st meeting of the North Central Weed Science Society, December 11–14 at the Hyatt Regency in Milwaukee, Wisconsin. The meeting, themed “Weeds: Old Timers and New Arrivals,” will include research presentations in both oral and poster formats, as well as three symposia:

• Invasive Weeds (Wednesday morning and afternoon)
• Glyphosate Resistance (all day Tuesday)
• Adjuvants (all day Wednesday)

The Extension section will host discussions on “Glyphosate Weed Management” and “What Makes a Resistant Weed Resistant?” on Thursday. These discussions will undoubtedly be lively and spirited as well as informational and thought-provoking.

For additional information about the North Central Weed Science Meeting, including hotel accommodations and meeting registration, please visit NCWSS.org on the Web.—Aaron Hager and Dawn Nordby

INSECTS

Results from the 2006 Fall Survey for Second-Generation European Corn Borers

We finally found an opportunity to compile and analyze the data gathered during our annual fall survey of second-generation European corn borer populations. A summary of the data is presented in Table 1. At a near-future date, a complete PowerPoint slide set will be uploaded to the IPM Web site (www.ipm.uiuc.edu/fieldcrops/insects/european_corn_borer/index.html). This link directs you to the European corn borer Web page. Look for Fall Survey 2006 under “Related Links” and click. A fact sheet that describes the history and procedures used for the annual European corn borer survey also can be found on the European corn borer Web page.

Population densities (number of borers per 100 plants) increased noticeably in most counties and most crop reporting districts from 2005 to 2006. Relatively large densities of second-generation European corn borers were evident in the West and West Southwest crop reporting districts (73.77 and 76.88 corn borers per 100 plants, respectively). The mean percentages of corn plants infested with European corn borer larvae in these same two crop reporting districts were 39% and 46%, respectively. Five counties had average densities of more than 100 larvae per 100 plants—Adams (131.8, the largest county density in 2006), Warren (113.4), Greene (104), Montgomery (105), and Morgan (124). The statewide average number of larvae per 100 plants was 23.24, and the statewide level of infestation was 33%. Very few European corn borer larvae were present in cornstalks in many southern counties (Southwest and Southeast crop reporting districts). In fact, none were found in four of the eight fields sampled in those districts. However, several fields were infested with southwestern corn borer larvae, although those data are not reported here.

Interestingly, the statewide average number of second-generation European corn borers per 100 plants in Illinois was lower in 2006 (23.24) than in 2005 (34.4). However, the average percentage of infestation of corn plants was 24.2 in 2005 and 33 in 2006. In many of the counties in western Illinois, cornfields had either no European corn borer infestations or were 80% to 100% infested. Of the 498 fields surveyed, 244 (49%) had 0% infestation, whereas 75 (15%) had between 76% and 100% infestation (27 of 498 fields, or 5.4%, had 100% infestation). It is important to point out that although 49% of the fields surveyed had no European corn borer infestation, this does not necessarily mean that all of these fields were planted with Bt corn for corn borer control. As indicated previously, some of the fields with no European corn borer larvae were infested with southwestern corn borer larvae. In addition, some non-Bt cornfields may have had very low-level infestations of European corn borers or no infestation at all.

As we have stated many times before, data from the annual survey of second-
Table 1. Final results of the 2006 European corn borer fall survey by county.

<table>
<thead>
<tr>
<th>Counties(^1) and Crop Reporting Districts</th>
<th>Percentage of plants infested, 2001</th>
<th>European corn borer larvae per 100 plants</th>
<th>Counties(^1) and Crop Reporting Districts</th>
<th>Percentage of plants infested, 2001</th>
<th>European corn borer larvae per 100 plants</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bureau</td>
<td>26</td>
<td>25.6</td>
<td>Calhoun</td>
<td>40</td>
<td>67.4</td>
</tr>
<tr>
<td>JoDaviess</td>
<td>12</td>
<td>25.2</td>
<td>Christian(^2)</td>
<td>35</td>
<td>28.8</td>
</tr>
<tr>
<td>Mercer</td>
<td>9</td>
<td>23.0</td>
<td>Greene</td>
<td>63</td>
<td>104.0</td>
</tr>
<tr>
<td>Ogle</td>
<td>1</td>
<td>0.0</td>
<td>Madison</td>
<td>44</td>
<td>99.2</td>
</tr>
<tr>
<td>Whiteside</td>
<td>4</td>
<td>3.6</td>
<td>Montgomery</td>
<td>50</td>
<td>105.0</td>
</tr>
<tr>
<td>Winnebago</td>
<td>10</td>
<td>12.8</td>
<td>Morgan</td>
<td>57</td>
<td>124.0</td>
</tr>
<tr>
<td>Northwest</td>
<td>10</td>
<td>15.03</td>
<td>Pike</td>
<td>44</td>
<td>39.6</td>
</tr>
<tr>
<td>DeKalb</td>
<td><1</td>
<td>0.4</td>
<td>Sangamon</td>
<td>38</td>
<td>47.0</td>
</tr>
<tr>
<td>Kendall</td>
<td>6</td>
<td>8.8</td>
<td>West Southwest</td>
<td>46</td>
<td>76.88</td>
</tr>
<tr>
<td>LaSalle</td>
<td>28</td>
<td>29.6</td>
<td>Clark</td>
<td>57</td>
<td>77.2</td>
</tr>
<tr>
<td>McHenry</td>
<td>17</td>
<td>19.8</td>
<td>Coles</td>
<td>25</td>
<td>22.2</td>
</tr>
<tr>
<td>Will</td>
<td>14</td>
<td>5.4</td>
<td>Crawford</td>
<td>31</td>
<td>40.2</td>
</tr>
<tr>
<td>Northeast</td>
<td>13</td>
<td>12.8</td>
<td>Effingham</td>
<td>30</td>
<td>40.2</td>
</tr>
<tr>
<td>Adams</td>
<td>81</td>
<td>131.8</td>
<td>Marion</td>
<td>24</td>
<td>4.6</td>
</tr>
<tr>
<td>Fulton</td>
<td>43</td>
<td>80.4</td>
<td>Shelby(^3)</td>
<td>30</td>
<td>35.8</td>
</tr>
<tr>
<td>Knox</td>
<td>24</td>
<td>23.4</td>
<td>East Southeast</td>
<td>33</td>
<td>36.70</td>
</tr>
<tr>
<td>McDonough</td>
<td>15</td>
<td>30.4</td>
<td>Jackson</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Schuyler</td>
<td>35</td>
<td>63.2</td>
<td>Monroe</td>
<td>10</td>
<td>9.6</td>
</tr>
<tr>
<td>Warren</td>
<td>34</td>
<td>113.4</td>
<td>Pulaski-Alexander</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>West</td>
<td>39</td>
<td>73.77</td>
<td>Washington</td>
<td>20</td>
<td>21.8</td>
</tr>
<tr>
<td>Logan</td>
<td>25</td>
<td>48.8</td>
<td>Southwest</td>
<td>8</td>
<td>7.85</td>
</tr>
<tr>
<td>Macon</td>
<td>32</td>
<td>25.4</td>
<td>Franklin</td>
<td>2</td>
<td>0.0</td>
</tr>
<tr>
<td>McLean</td>
<td>21</td>
<td>34.2</td>
<td>Massac</td>
<td>0</td>
<td>0.0</td>
</tr>
<tr>
<td>Peoria</td>
<td>36</td>
<td>53.0</td>
<td>Saline</td>
<td>16</td>
<td>10.4</td>
</tr>
<tr>
<td>Woodford</td>
<td>42</td>
<td>59.8</td>
<td>Wayne</td>
<td>11</td>
<td>13.4</td>
</tr>
<tr>
<td>Central</td>
<td>31</td>
<td>44.24</td>
<td>White</td>
<td>35</td>
<td>22.4</td>
</tr>
<tr>
<td>Champaign</td>
<td>22</td>
<td>8.0</td>
<td>Southeast</td>
<td>13</td>
<td>9.24</td>
</tr>
<tr>
<td>Iroquois</td>
<td>10</td>
<td>10.2</td>
<td>STATE</td>
<td>33</td>
<td>23.24</td>
</tr>
<tr>
<td>Livingston</td>
<td>12</td>
<td>31.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vermilion</td>
<td>22</td>
<td>22.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>East</td>
<td>17</td>
<td>18.2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1Unless otherwise indicated, 10 randomly selected fields were sampled.
217 randomly selected fields were sampled.
311 randomly selected fields were sampled.

generation European corn borers usually cannot be used to predict infestations of European corn borers the following year. However, we certainly know that the larger the population in the fall, the greater the potential population for first-generation European corn borers the following spring. Obviously, weather and natural control agents will have a major impact on corn borer populations in 2007, but corn growers in western Illinois should be on alert nonetheless. Two disease organisms that infect European corn borer larvae, *Beauveria bassiana* (a fungus) and *Nosema pyrausta* (a microsporidian), were not readily apparent in most of the cornfields surveyed in 2006.

Entomologists in most states no longer conduct annual surveys of European corn borer larvae, and there is rationale for discontinuing the activity. However, because we have a mostly continuous set of annual data (except for two years) since the mid-1940s, we continue to build the Illinois data set. With results like we experienced in 2006, it seems that the time and effort spent collecting the data was well worth it.

We thank all of the Extension educators, county Extension personnel, graduate students, and academic professionals who helped us gather the data for the annual fall survey of European corn borers in 2006. Without their volunteer help, we would not be able to support a survey of such magnitude.

Look for the PowerPoint slide set in the near future. We’ll place a notification in the Bulletin.—Kevin Steffey and Mike Gray

Syngenta’s Agrisure RW Event Encounters Significant Challenge in University of Illinois Experiment, Urbana

In 2005, Bt corn hybrids were planted on 35% of the U.S. corn acreage (Fernandez-Cornejo and Caswell 2006). The majority of these transgenic Bt corn hybrids were aimed at the European corn borer. However, interest in expanding the Bt corn acreage is escalating as the variant western corn rootworm extends its range and corn continues to be viewed as a more profitable alternative in our corn- and soybean-dominated agroecosystem. In 2003, Bt corn hybrids (MON 863, Cry3Bb1, YieldGard RW) targeted at corn rootworms were commercialized for the first time. In 2006,
Herculex RW hybrids (DAS-59122-7, Cry3Ab1/Cry35Ab1) were commercialized. Both of these transgenic corn rootworm events are designed to provide root protection against corn rootworm larvae.

In 2007, Syngenta intends to commercialize a new transgenic corn rootworm event (MIR604, mCry3Aa, Agrisure RW). The U.S. Environmental Protection Agency granted registration approval for this event (MIR604) on October 4, 2006. This new corn rootworm Bt event will be available as a single trait in some hybrids and also in stacks that feature glyphosate tolerance (Agrisure GT). Hybrids with this new event will be marketed and sold under many familiar trade names, including NK Brand, Garst, and Golden Harvest seeds. The number of transgenic corn acres, especially those acres devoted to stacked hybrids (combinations of Bt events and herbicide tolerance or resistance traits), is expected to increase quite significantly over the next several years.

It is imperative that research on the efficacy of these transgenic corn rootworm hybrids be continued by scientists at land-grant universities in multiple locations across the Corn Belt. As we have demonstrated during this technology’s infancy, not all transgenic corn rootworm hybrids (even those with the same event) offer the same level of root protection against corn rootworms. Producers should be equipped with as much information as possible in order to make the most informed pest management decisions. As the number of Bt corn acres increases, so, too, will the selection pressure for development of resistance to Bt by multiple insect pests of corn. This underscores the importance of strict adherence to resistance management protocols that have been developed for these pest management tools.

Table 2 provides results from the MIR604 experiment we conducted during the 2006 growing season. The planting date for this trial was May 23, 2006. This date is obviously very late by producers’ current standards, and interpretation of these data should be viewed accordingly. Had this trial been planted in early April, we wonder what level of root injury would have occurred in these treatments.

Corn rootworm pressure in the untreated check was intense. By July 17, three nodes of roots in the check had been completely destroyed. The mean node-injury ratings of the following treatments were not significantly different at the 0.05 probability level: MIR604 (1.04), MIR604 + Cruiser 5FS (1.33), Force 3G (0.94), and Poncho 1250 (1.05). Both Aztec 2.1G and Lorsban 15G provided greater root protection (mean node-injury ratings of 0.26 and 0.51, respectively) than the MIR604 treatments.

Why was the level of root pruning (more than one node of roots destroyed) so severe by mid-July for this new transgenic event? We have hypothesized previously that the variant western corn rootworm may be able to cause more injury to corn roots than the non-variant population (worm for worm). At this point, we have circumstantial evidence that this hypothesis is worthy of more careful experimentation.

Other interesting observations in our experiments with transgenic rootworm hybrids in 2006 included the very unusual root morphology of our Herculex RW hybrids (Pioneer 34A18, Mycogen 2G777, Mycogen 2P788 hybrids). In many instances the primary roots were very short and densely covered with secondary roots. The injured roots had a characteristic “bottlebrush” appearance. On many root systems, it appeared as if primary roots had been “pinched” off due to intense corn rootworm feeding activity. Evaluating these roots for rootworm larval injury was difficult primarily due to the profusion of secondary roots that were found near corn rootworm injury sites. The root systems had readily visible corn rootworm scarring and some pruning as we reported in the Bulletin (issue no. 21, August 18, 2006). In fact, at the Urbana and Monmouth locations, approximately 1/2 node of roots was pruned on the Herculex XTRA + Poncho 250 (Pioneer 34A18) treatment.

Our experimental trials continue to reinforce that there are no silver bullets for corn rootworm larvae. These new transgenic corn rootworm hybrids offer tremendous potential; however, we will need to continually evaluate the various corn rootworm events at multiple locations. Even with the same

Table 2. MIR604 corn rootworm efficacy experiment, University of Illinois, Urbana, 2006.

<table>
<thead>
<tr>
<th>Treatment1</th>
<th>Mean node injury rating (July 17)2</th>
<th>Percentage consistency3</th>
</tr>
</thead>
<tbody>
<tr>
<td>MIR 604</td>
<td>1.04 c</td>
<td>40</td>
</tr>
<tr>
<td>MIR 604 + 5FS (0.25 mg a.i. per seed)</td>
<td>1.33 bc</td>
<td>25</td>
</tr>
<tr>
<td>Cruiser 5FS (1.25 mg a.i. per seed)</td>
<td>1.87 b</td>
<td>10</td>
</tr>
<tr>
<td>Force 3G (4 oz of product per 1,000 ft of row)</td>
<td>0.94 cd</td>
<td>60</td>
</tr>
<tr>
<td>Aztec 2.1G (6.7 oz of product per 1,000 ft of row)</td>
<td>0.26 e</td>
<td>100</td>
</tr>
<tr>
<td>Lorsban 15G (8 oz of product per 1,000 ft of row)</td>
<td>0.51 de</td>
<td>90</td>
</tr>
<tr>
<td>Poncho 1250</td>
<td>1.05 c</td>
<td>40</td>
</tr>
<tr>
<td>Check</td>
<td>3.00 a</td>
<td>0</td>
</tr>
</tbody>
</table>

1Planting date was May 23, 2006. Corn was planted (2006) into an area that had been planted to a trap crop (late-planted corn interplanted with pumpkins) the previous season (2005).

2Node injury ratings are based on the 0 to 3 node injury scale developed by Oleson et al. (2005): 0.00 = no feeding damage; 1.0 = one node (circle of roots), or the equivalent of an entire node, pruned back to within approximately 3.8 cm (1.5 inches) of the stalk (or soil line if roots originate above ground nodes); 2.0 = two complete nodes pruned; 3.0 = three or more complete nodes pruned (the highest rating that can be given). Five root systems were evaluated from each of four replications (n = 20 per mean).

3Percentage consistency is the percentage of roots with a node injury rating < 1.0.
transgenic event, we are beginning to learn that corn rootworm protection across hybrids is not always the same. We look forward to receiving your observations regarding the performance of your chosen corn rootworm transgenic hybrid(s) this past season.—Mike Gray and Kevin Steffey

References

Controlling Perennial Weed Species

Perennial weed species often become established in no-till production systems and can cause great frustration with respect to how best to control or eradicate them. Without the option of mechanical control (i.e., tillage), perennial weed species are generally best controlled by postemergence translocated herbicides. Selection of which translocated herbicide to use, as well as when to make the application, can impact the level of success achieved.

Perennial weed species are often hard to control because they store large amounts of food reserves in their root systems. Controlling the aboveground parts of perennial species is usually not enough to achieve satisfactory, long-term control; the root system must be controlled as well. Translocated herbicides (those that can move into the roots) are usually the most effective chemical options, but the time of year these herbicides are applied is important.

In the spring, perennial species rely on stored food reserves to initiate new growth, so most of the food at that time of year is moving upward from the roots to support new vegetative development. Because of that upward food movement, it’s often difficult to get sufficient herbicide into the root when applications (burndowns, for example) are made in the spring. Good control of perennial broadleaf species can be achieved when applications of postemergence translocated herbicides are made about the time perennial broadleaf species begin to flower. Since this time has (obviously) already passed for this year, another good time to treat perennial weed species is fall.

As day length becomes shorter and temperatures become cooler, perennial plant species begin to move food back into their roots. Since food reserves are moving downward in the plant during the fall, more translocated herbicide is moved into the root of perennial species, and control is generally much greater than can be achieved in spring.

Dandelions are often very common in no-till production systems, and they frequently escape spring burndown applications of translocated herbicides. This fall, as harvest progresses at a good pace, there will likely be a very good opportunity to work on dandelions once the crops are removed. Food reserves are being moved to the roots, and good herbicide translocation can occur, resulting in more complete control of the roots. Additionally, higher rates of certain translocated herbicides frequently can be used in the fall compared with spring.

For example, 2,4-D is used as a burn-down herbicide in the spring, but usually at only 1 pint or less per acre due to increased potential for soybean injury and a longer interval prior to planting at rates greater than 1 pint. Higher rates of 2,4-D can be used in the fall, and control of perennial weed species such as dandelion will usually be greater in fall than in spring. Keep in mind that fall applications should be made before many hard frosts occur, as leaf tissue damage caused by hard freezes usually decreases herbicide absorption. If possible, try to make applications on days when air temperatures range into the 50s and sunshine is abundant.

What about other perennial species? While the general principles ascribed to fall timing hold true for most perennial species, not all the ones common to agronomic crops have sufficient leaf surface remaining (considering the calendar has turned to November) to absorb a foliar-applied herbicide. Take the time to scout target fields to determine if the perennial species are still healthy and actively growing. If frost has caused the perennial plants to drop leaves and stop growing, the benefits of a fall-applied herbicide likely will be reduced.—Aaron Hager and Dawn Nordby

Fall-Applied Herbicides

Over the past several seasons, the practice of applying herbicides in the fall, specifically to control winter annual weed species, has gained popularity across many areas of Illinois. No-till fields, particularly in central and southern Illinois, can sport robust vegetative growth before spring planting if early preplant or burndown herbicide applications are delayed. Interest has thus grown in attempting to control fall-emerging weeds soon after crop harvest.

We, like researchers across many midwestern states, have investigated the efficacy of fall-applied herbicides for controlling winter annual weed species. Our trials have ranged from north to south in Illinois, beginning during the fall of 1999 and continuing into this fall. We’ve looked at many aspects, concepts, and products and product combinations during these years and offer the following points of consideration:

1. Fall herbicide applications seem to “fit” better in central and southern Illinois compared with northern Illinois. This probably is attributable to generally milder average winter temperatures the farther south in Illinois one ventures, as well as to earlier
resumption of vegetative growth in the spring. Fall-emerging weed species in the south may be able to produce more growth in the fall before entering winter dormancy as well as to resume growth earlier in the spring. Thus, at any given date in spring, weed growth in no-till fields in southern Illinois typically is greater than in no-till fields in northern Illinois.

2. Application timing can be very important in achieving the goal for fall applications. For example, if you are interested in applying a treatment that does not have much soil-residual activity, such as 2,4-D or glyphosate, the application should be timed to occur after the majority of weeds have emerged following harvest. Instead of applying such a treatment in mid-October, waiting until early to mid-November might provide better results. If, on the other hand, your fall application will include a herbicide with soil-residual activity, application timing could occur sooner.

3. Be sure that the products you are considering applying in the fall have activity on emerged weeds. For example, if you are thinking about applying simazine on fields where corn is to be planted in 2007 and weeds have already emerged, you might want to consider tank-mixing another product with simazine to control the already emerged weeds.

4. Fall applications that include soil-residual herbicides may not always produce a clean field by the time planting occurs next spring. Delays in fieldwork caused by adverse environmental conditions may allow the fields to green-up before the crop can be planted. Additionally, on several occasions we’ve observed that if we successfully control the suite of winter annual weed species, summer annual weed species (such as common lambsquarters and smartweed) emerge sooner than if the winter annuals were still present.

5. It’s perhaps even more tenuous to expect much control of waterhemp from fall-applied herbicides. Given the extended emergence duration of waterhemp, better control from a soil-residual herbicide often results when the application is made closer to planting compared with several weeks (or months) prior to planting.

6. With the increasing prevalence of marestail, including glyphosate-resistant populations, fall herbicide applications may prove more efficacious than spring applications. Glyphosate alone may not provide adequate control of marestail when applied in either fall or spring, but a fall-application timing provides an opportunity to utilize higher application rates of products such as 2,4-D than are feasible in spring. However, keep in mind that emergence of marestail may not be restricted to fall months. Anecdotal observations suggest that some percentage of marestail populations may emerge during spring months. We plan to begin experiments next spring to determine the emergence characteristics of marestail populations along a north–south transect in Illinois, so stay tuned for future updates.

—Aaron Hager

REGIONAL REPORT

Extension center educators, unit educators, and unit assistants in northern, west-central, east-central, and southern Illinois prepare regional reports to provide more localized insight into pest situations and crop conditions in Illinois. The reports will keep you up to date on situations in field and forage crops as they develop throughout the season. The regions have been defined broadly to include the agricultural statistics districts as designated by the Illinois Agricultural Statistics Service, with slight modifications:

• North (Northwest and Northeast districts, plus Stark and Marshall counties)
• West-central (West and West South-central districts, and Peoria, Woodford, Tazewell, Mason, Menard, and Logan counties from the Central district)
• East-central (East and East Southeast districts [except Marion, Clay, Richland, and Lawrence counties], McLean, DeWitt, and Macon counties from the Central district)
• South (Southwest and Southeast districts, and Marion, Clay, Richland, and Lawrence counties from the East Southeast district)

We hope these reports will provide additional benefits for staying current as the season progresses.

Northern Illinois

Corn harvest continues in most areas of the northern region, with the southern third about 90% or more complete and the remainder varying from 60% to 80% complete. A large majority of cornfields have yielded from 180 to 200-plus bushels per acre. Disease resistance and stalk strength are certainly variable among the hybrids this year. Stalk rot problem fields are still evident and are slowing down harvest completion.

Soybean harvest is over 95% complete, with most fields yielding between 45 and 60 bushels per acre. Overall soybean yields may be the highest in the northern region for nearly 10 years or more.

The majority of the seeded wheat has emerged, and 2007 wheat acreage may be higher than 2006’s.

Contributing Authors

Mike Gray (megr@uiuc.edu), Extension Entomology, (217)333-6652
Aaron Hager (hager@uiuc.edu), Extension Weed Science, (217)333-4424
Dawn Nordby (dnordby@uiuc.edu), Extension Weed Science, (217)333-4424
Kevin Steffey (ksteffey@uiuc.edu), Extension Entomology, (217)333-6652