Corn and Soybean Insects Discussed at Crop Session

Producers, agribusiness dealers, and crop scouts can gain timely information on corn and soybean insects at a workshop on Thursday, June 28. Corn rootworm, soybean aphid, and western bean cutworm are some of the insect pests that will be discussed at the Crops Training Center at the Northern Illinois Agronomy Research Center, 14509 University Road, Shabbona.

The workshop will address field crop insect issues that have occurred and those expected to occur through July in northern Illinois. An overview of insect research efforts in 2007, with some background from previous years, will also be shared. Presenters will be Dr. Kevin Steffey, University of Illinois Extension entomologist, and (via teleconference) Dr. Marlin Rice, Iowa State University Extension entomologist.

The workshop will include hands-on samples, handout materials, and viewing of field trials (weather permitting). Continuing education units have been applied for for Certified Crop Advisers.

Registration begins at 8:30 am, with the workshop conducted from 9:00 a.m. to noon (lunch not provided). The cost is $25 per person; reservations are due by June 23 to Whiteside County Extension, c/o Greg Clark, 100 E. Knox Street, Morrison, IL 61270; 815-772-4075. Make check payable to University of Illinois Extension.

A brochure for the workshop is available from Whiteside County Extension and other Extension offices in northern Illinois. A minimum of 20 reservations is needed.

The final workshop for the summer will be August 8 on weed competition and foliar diseases of corn and soybean. The programs are sponsored by University of Illinois Extension.—Greg Clark

Increase Vigilance for Armyworms

(Originally published as an Alert on June 15, 2007, at www.ipm.uiuc.edu/bulletin)

We have heard from several people that extremely large numbers of armyworms have been observed and/or captured in traps. Kevin Black, insect/plant disease technical manager with Growmark, has observed “huge” numbers of armyworm moths in the Bloomington-Normal area, and several FS agronomists throughout central Illinois have reported to him equally large flights of the moths. Marlin Rice, Extension entomologist at Iowa State University, also reported “huge” numbers of armyworm moths captured in blacklight traps near Ames, Iowa. Ron Hines, FS seed agronomist for Growmark’s southern region, has told us that the numbers of armyworm moths being captured in pheromone traps in Pope County are noticeably larger than the numbers captured in April. The results from the early flights were...
pockets of significant armyworm damage in southern and central Illinois in May. A few other reports from people who were not certain what moths they were seeing suggest that the moths in question were armyworms.

Given the very dry conditions throughout much of Illinois right now, armyworms are not going to find a lot of ideal egg-laying sites. The females are liable to concentrate their egg laying in fewer locations, resulting in concentrations of intense feeding. No-till corn fields, green pastures, golf courses, and possibly crops often not associated with armyworms will receive the brunt of the infestations. So this is a warning to everyone to keep their eyes open for armyworms everywhere. After larvae hatch from the eggs, their presence may not be noticed for a few days because the larvae are so small. But when they get large enough, excessive damage may seem to appear overnight.

On a related note to people who are operating pheromone traps to monitor for western bean cutworms: make certain you can differentiate between western bean cutworm moths and armyworm moths. The article in issue 12 of the Bulletin (June 15, 2007) provides some detail, and Marlin Rice has written an article for Iowa State University’s Integrated Crop Management newsletter that adds more information.

We have no idea what will derive from the extremely large armyworm moth flights, but we should be on point.—Kevin Steffey and Mike Gray

Get Ready for Japanese Beetles and Western Corn Rootworms

(Originally published as an Alert on June 15, 2007, at www.ipm.uiuc.edu/bulletin)

The line on Japanese beetles in southern Illinois has already become “ridiculous,” a word we used to describe the numbers of beetles being captured in traps in southern Illinois in 2006. Ron Hines, FS seed agronomist for Growmark’s southern region, has reported new 1-day and 3-day records for captures of Japanese beetles in the trap in Massac County—almost 49,000 in 24 hours (June 14–15) and almost 102,000 June 12 through June 15! The trap operator already had switched to the larger container, which now needs to be emptied twice per day. In addition, he has an insect disposal problem.

These unprecedented numbers of Japanese beetles emerging this early in 2007 does not bode well, for obvious reasons. All of these beetles are going to be hungry, and injury to the crops they infest probably will be significant. Corn and soybean growers, beware.

It’s apparent that Japanese beetles survived the winter very well in southern Illinois counties, so now those of us in central and northern Illinois are wondering what’s in store for us. It’s worth noting that a handful of people already have found the occasional Japanese beetle right here in east-central Illinois.

Given our prediction of early emergence of western corn rootworms in issue no. 12 of the Bulletin (June 15, 2007), the beetles decided to show up right on cue. Joe Spencer, research entomologist with the Illinois Natural History Survey, observed newly emerged western corn rootworm adults in his plots just northeast of Urbana on June 14. So now we will have both western corn rootworm adults and Japanese beetles vying for corn silks when they emerge. Until that time, expect to see significant leaf feeding, particularly by western corn rootworms.

With insects starting to rear their chitinous heads while corn and soybeans are suffering from a lack of moisture, we will have to anticipate adjusting control decisions on the fly.—Kevin Steffey and Mike Gray

Western Corn Rootworm Adults Abundant in Many Corn Fields

As reported in last week’s Bulletin (issue no. 12, June 15, 2007), emergence of western corn rootworm adults is well underway across much of southern and central Illinois. In many corn fields, a range of corn rootworm life stages can now be found, including second and third instars, pupae, and adults. We should anticipate more leaf feeding this season in corn fields because of the early adult emergence and the overall unavailability of pollen or silk tissue at this point. We’ve had early emergence of western corn rootworm adults in the past, most often in conjunction with a hot, dry spring. A review of some articles written for the Bulletin in 1988 revealed that western corn rootworm adults were observed on corn in Champaign County on June 20. The first sightings of adults this year correspond very well to the 1988 season. Let’s hope that most other comparisons between 1988 and 2007 end here.

On June 18, we made some observations in our standard corn rootworm efficacy trial located south of Urbana and noted that plants in many treatments were under considerable stress due to root damage and lack of moisture. Several of the root systems that we examined had numerous corn rootworm larvae.

Over the next week to 10 days, rainfall will need to occur in order for some root regeneration to begin. We also observed striking differences between the Bt and non-Bt plots. Plants in the Bt plots were faring much better and had considerably less leaf rolling than the non-Bt treatments. Because of the very dry soil conditions in Urbana throughout May and June, the soil insecticides are facing a significant performance challenge. We look forward to sharing the results of our root evaluations in July. As requested last week, please share your observations with us regarding your perceptions of
Japanese Beetles Have Our Attention

On the heels of our reporting the remarkable numbers of Japanese beetles being captured in traps in southern Illinois (Alert, June 15, 2007), there come even more remarkable numbers. To get it from the horse’s mouth (so to speak—sorry, Ron), read the comments from Ron Hines (FS seed agronomist, Growmark southern region) on captures of insects during the week ending June 19 (www.ipm.uiuc.edu/pubs/hines_report/index.html).

But to capture the essence of his comments, you should know that the trap in Massac County has garnered both a single-day and a weekly record for captures for the history of that trap—68,372 beetles captured on June 17, and 309,352 captured during the week ending June 19. The numbers of Japanese beetles captured at the five other locations (Fayette, Jefferson, Pope, Pulaski, and St. Clair counties) pale by comparison, but most of them captured tens of thousands of Japanese beetles during the same week.

Our reporting of the captures of Japanese beetles in traps in southern Illinois has sparked some competitive spirit. Ryan Cox, south of Elliott in Ford County, used “55 gallon drums, clusters of 5 gallon buckets, and small swimming pools to collect hundreds of thousands of Japanese Beetles” on his farmstead in 2006. Ryan intends to be fully prepared for Japanese beetles again this year.

Several people have reported finding either lots of or just a few Japanese beetles in corn fields, depending on the area of the state, but it is clear that everyone should be on alert. With their silk-clipping behavior, Japanese beetles could wreak havoc in corn fields already suffering from a lack of moisture, assuming the corn plants can even muster silks. The recent rains helped the crops in a lot of areas in Illinois, but some locations still have a significant moisture deficit. And even if the rains helped the corn, the Japanese beetles are still there waiting for pollination. In the meantime, the beetles may very well feed on corn leaves. And don’t forget to look for these Japanese beetles in soybeans, too.

The economic thresholds we use for making decisions about Japanese beetle control are 3 or more beetles per ear in corn (plants still pollinating) and 30% defoliation of soybeans before bloom, 20% defoliation during reproductive growth. These thresholds have been in place for many years, so it’s difficult to know what changes are necessary for modern hybrids and varieties, higher yield expectations, and/or environmental conditions.

Suffice it to say that people who make these decisions will have to use their experiences and best judgment.

Insecticides suggested for control of Japanese beetles in corn and soybeans are presented in Table 1. Please follow all label directions and precautions. —Kevin Steffey

### Soybean Aphids Still Relatively Few in Illinois

Based on our weekly surveys (which we initiated during the week of June 11) and reports we have received from several of you, numbers of soybean aphids in northern Illinois soybean fields are still small. This is not terribly surprising given the high temperatures that prevailed over the past couple of weeks. However, the presence of soybean aphids in soybean fields clearly indicates that continual vigilance is necessary, especially if temperatures decline into the 80s, as they have over the past few days in some areas. Populations of soybean aphids can “explode” under such conditions, with a population doubling time of 3 to 4 days. Although the densities of soybean aphids in all reports we have received have been fewer than 10 aphids per plant, the situation could change quickly. —Kevin Steffey

<table>
<thead>
<tr>
<th>Product</th>
<th>Amount of product per acre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ambush 25W</td>
<td>6.4 to 12.8 oz</td>
</tr>
<tr>
<td>Asana XL</td>
<td>5.8 to 9.6 oz</td>
</tr>
<tr>
<td>Baythroid 2</td>
<td>6.2 to 2.8 oz</td>
</tr>
<tr>
<td>Capture 2EC</td>
<td>2.1 to 6.4 oz</td>
</tr>
<tr>
<td>Mustang Max</td>
<td>2.72 to 4 oz</td>
</tr>
<tr>
<td>Penncap-M</td>
<td>2 to 4 pt</td>
</tr>
<tr>
<td>Pounce 3.2EC</td>
<td>4 to 8 oz</td>
</tr>
<tr>
<td>Proaxis</td>
<td>2.56 to 3.84 oz</td>
</tr>
<tr>
<td>Sevin XLR Plus</td>
<td>1 to 2 qt</td>
</tr>
<tr>
<td>Warrior</td>
<td>2.56 to 3.84 oz</td>
</tr>
</tbody>
</table>

*Use restricted to certified applicators.

*Product not labeled for use on this crop.

Morningglories: Gardener’s Friend, Farmer’s Adversary

Morningglory species, with their large, brightly colored flowers, are favorites of many gardening enthusiasts. These plants grow well in a variety of soil types, produce abundant foliage during the hot and sunny days of summer, and aggressively cover trellises, poles, fences, and the like. While morningglories are a favored ornamental for many homeowners and gardeners, some species can be troublesome weeds in Illinois corn and soybean fields.

Several species of annual morningglory occur in Illinois agronomic cropping systems, including tall (Ipomoea...
morningglory are slender and more butterfly-shaped cotyledons of pitted and ivyleaf morningglory seedling early as cotyledon-stage plants. Tall glory species can be accomplished as Identification of the annual morning common characteristic of the Polygo petiole and stem on wild buckwheat, a of an ochrea at the junction of the leaf distinguish wild buckwheat from the ted morningglory. One easy way to appearance to those of tall and pit buckwheat are heart-shaped, similar in species that is widespread across Illi-nose) morningglory. The family name Convolvulus is derived from the Latin verb meaning “to entwine,” while the genus Ipomoea comes from the Greek ips (“a worm”) and homoios (“resembling”), which refers to the wormlike twining of the plants as they grow around stationary objects.

The distribution of the three annual morningglory species varies somewhat across Illinois. Tall and ivyleaf morningglory are perhaps the most widely distributed, while pitted morningglory is most commonly found across the southern half of the state. The three perennial species occur across most areas of Illinois. Both annual and perennial morningglory species occur in cultivated fields and nondisturbed sites.

Another vining plant that may be mistaken for a morningglory species is wild buckwheat (Polygonum convolvulus). The leaves of wild buckwheat are heart-shaped, similar in appearance to those of tall and pitted morningglory. One easy way to distinguish wild buckwheat from the annual morningglories is the presence of an ochrea at the junction of the leaf petiole and stem on wild buckwheat, a common characteristic of the Polygonaceae (smartweed) family.

Identification of the annual morningglory species can be accomplished as early as cotyledon-stage plants. Tall and ivyleaf morningglory seedling plants have butterfly-shaped cotyledons with rounded lobes, while the butterfly-shaped cotyledons of pitted morningglory are slender and more deeply notched, with pointed lobes. The true leaves of tall morningglory are heart-shaped and covered with hairs that lie flat on the surface. True leaves of pitted morningglory are also heart-shaped but are generally smaller than the leaves of tall morningglory, with few to no hairs. The leaf margins are often tinged with purple and taper to a more pronounced pointed tip. I vyleaf morningglory true leaves are very hairy and deeply 3-lobed.

Postemergence control of annual morningglory species in soybean can be challenging. These weed species can increase in size very quickly with adequate soil moisture and warm air temperatures, often exceeding labeled sizes in a short time. Emergence of annual morningglories occurs over a relatively long period compared with many other summer annual weed species, and emergence is often enhanced following a precipitation event. So achieving acceptable morningglory control in soybean with a single post-emergence herbicide application can be difficult.

Postemergence herbicide options for morningglory control in soybean include both contact and translocated herbicides. Contact herbicide options include products containing the active ingredients fomesafen (Flexstar), lactofen (Cobra), and aclonifen (Ultra Blazer). These products require thorough spray coverage of the target foliage to achieve optimal control, and they work best when morningglory plants have no more than 4 true leaves. Translocated herbicide options for control or suppression of morningglory include glyphosate, cloransulam (FirstRate), imazamox (Raptor), and chlorimuron (Classic).

Symptoms of herbicide injury on morningglory following application of a translocated herbicide consist of an initial stunting and yellowing of the leaves. Injury symptoms are often slower to develop with translocated herbicides than with contact herbicides. 2,4-DB, at 1 to 2 fluid ounces per acre, is sometimes tank-mixed with either contact or translocated herbicides to improve morningglory control, but it is rarely applied alone postemergence. Table 2 provides information from product labels about product application rates and morningglory sizes. Many of these products are labeled for tank-mix applications with other postemergence soybean herbicides, so application rates and morningglory sizes may vary from what is presented here. Be sure to consult the product label for any recommended spray additives, as recommendations can vary according to current growing conditions, tank-mix partner, weed spectrum and size, and other factors.

Soybean weed control practitioners are often frustrated when attempting to control morningglory postemergence exclusively with glyphosate. Glyphosate, at 0.75 to 0.77 lb ae per acre, is much more effective when morningglories are small (about 1 to 3 inches) than when applications are delayed until plants exceed 8 to 12 inches. If larger morningglories are present and the initial plan was to apply glyphosate at 0.75 to 0.77 lb ae, you may want to consider some alternatives that might improve overall morningglory control.

Three potential options for improved morningglory control include increasing the glyphosate application rate from 0.75 to 1.12 lb ae per acre; making sequential applications of glyphosate, spaced approximately 10 to 14 days apart; and adding a tank-mix partner to glyphosate. Field research conducted at the University of Illinois (as well as field research from several other universities) has demonstrated improved morningglory control from each of these options compared with a single application of 0.75 lb ae glyphosate. In some trials sequential glyphosate applications improved morningglory control more often than tank-mixes, whereas in other trials tank-mixes were equal to or better than sequential glyphosate applications. Overall, sequential applications or herbicide tank-mixes are about
equal with respect to the number of instances in which one tactic has improved control relative to the other.


—Aaron Hager

### CROP DEVELOPMENT

#### How Soon and How Much Does It Need to Rain?

Rain fell in widely variable amounts over a large part of Illinois on June 18, ranging from none in parts of southern Illinois to as much as 2 inches near the Wisconsin border. One of the real frustrations in years of marginal rainfall is the reminder that rain in such years usually falls in thunderstorms and that such storms produce uneven distributions. We all understand this fact, but looking at rainfall maps that show an inch of rainfall in the same county where I got none still isn’t easy. It also hasn’t helped that some have gotten into a radar-watching mode, with results on the ground often not matching up with what the radar shows.

Let’s put “spotty” rainfall into perspective. Here in Champaign we got about one-third of an inch of rain. The corn looked good in the afternoon on June 18, but leaves were starting to curl again on June 20. Water use on June 19 in fields with larger plants was about half the amount of rain that fell on June 18. By the end of June 20, the water that fell on June 18 will be back in the atmosphere. If we had received one inch, it would have provided enough water to the crop for three more days. So the deficit and associated stress symptoms will likely reappear if we continue without rain, even in areas that received more rain.

We think, though, that such rainfall has a “priming” effect, by giving the plant greater ability to produce more roots to explore deeper soil layers. Hence an inch of rain might be much more than three times as valuable as a third of an inch. A corn crop that is under water stress from midmorning, as many fields have been in recent weeks, produces very little photosynathe (sugar) during that day. That means that the plant has little ability to produce more growth, whether the growth is roots or leaves and stem.

The symptom of this that we can see is the reduction in top growth that has been evident in the most stressed fields in the past week. If top growth is reduced, root growth potential is reduced as well, probably in proportion to the reduction in top growth, if not more. This failure of roots to grow rapidly means compromised ability of roots to grow into deeper soil layers to extract more water.

The question of how soon it “needs” to rain for the crop is a common one, but it is not a question with a direct answer. A similar question is how much rain needs to fall, presumably to put the crop back on track for top yields. The answer to both is that the more rain that falls (within reason—probably not more than 3 inches), and the sooner it falls, the better. The ideal would be perhaps 2 inches of well-distributed rain now, to restore depleted soil water in the upper 2 feet of the soil, and also to restore photosynthesis and growth rates to normal.

Except in those fields where there has been some death of leaf tissue as a result of a long period of dry weather, loss in yield potential has been relatively minor so far. But in many ways, the reduction in photosynthesis resulting from reduced growth (in leaf area) and leaf curling that accompanies water stress means that the crop is losing valuable sunlight hours here at the longest days of the year. Such plants may well turn out much the same as late-planted corn. In other words, good yields are still possible, but for this potential to be realized, above-average growing conditions will be required, including a return to good rainfall amounts and distribution, favorable conditions into late September, and lack (or control) of insect and disease attack.

Despite the setbacks, the early-planted corn in central and southern Illinois has continued to make rapid growth, and we will see tassels in some fields as early as this weekend. Leaf stages advance very rapidly in the final week before tassel emergence, at least when there is enough water. The height of our earliest-planted corn near Urbana seems about normal, and the top leaves are starting to show the upright orientation that signals the growth of the tassel into the whorl.

While tassels might appear early, there is no guarantee at this point that the plants will be able to muster enough water to produce silks on time. I’ll discuss this more next week, but given

---

**Table 2. Labeled application rates and morningglory sizes for several postemergence soybean herbicides.**

<table>
<thead>
<tr>
<th>Herbicide</th>
<th>Application rate (product/acre)</th>
<th>Morningglory size</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Leaf number</td>
</tr>
<tr>
<td>Ultra Blazer</td>
<td>1 pt</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.5 pt</td>
<td>4</td>
</tr>
<tr>
<td>Flexstar</td>
<td>1 pt</td>
<td>2 to 4(^a)</td>
</tr>
<tr>
<td></td>
<td>1.25 pt</td>
<td>3 to 6(^a)</td>
</tr>
<tr>
<td>Cobra</td>
<td>12.5 fl oz</td>
<td>2 to 4(^a)</td>
</tr>
<tr>
<td>FirstRate</td>
<td>0.3 oz</td>
<td>2 to 4</td>
</tr>
<tr>
<td>Classic</td>
<td>0.5 oz</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>0.67 oz</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>¾ oz</td>
<td>—</td>
</tr>
<tr>
<td>Raptor</td>
<td>5 fl oz</td>
<td>—</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>0.77 lb ae</td>
<td>—</td>
</tr>
<tr>
<td></td>
<td>1.125 lb ae</td>
<td>—</td>
</tr>
</tbody>
</table>

\(^a\)Size range depends on morningglory species.
the water shortages so far this year, you will want to be extra diligent to get into fields as soon as tassels appear and to note when pollen shed begins. Silks should appear within a day or two of the start of pollen shed. Because the rate of appearance of silks is likely to be slowed in fields with dry soils, and because late appearance of silks means less pollen available, it will be critical to watch fields to see if insects are eating silks. They might land in tassels and eat pollen as well, but the real danger is that they eat silks off to prevent pollination.

While soybean seems to be suffering a great deal in dry fields, and stands tend to be somewhat spotty in places, the soybean crop continues to show moderate growth in most areas. As I stated before, the crunch time for soybean is still several weeks away, so we can afford to wait and worry about this crop after we worry about pollination in corn. Continuing high temperatures will mean an early start to flowering. Once we are past the longest day of the year (June 21), high temperature, especially at night, will greatly speed up flowering, and we might well see flowers on earlier varieties before July. This can be an advantage, but only if we get enough rainfall to extend the flowering period and increase the number of flowers that become pods.

Wheat harvest is progressing rapidly and is likely to be nearly complete in Illinois by the end of June. Yield reports to date have been variable, but there is some very good wheat. The variety trial at Brownstown was harvested on June 14, and yields of varieties ranged from 54 to 95 bushels per acre, with an average of 78. That may turn out to be one of the higher-yielding locations this year, but it represents the ability of this crop to bounce back from early problems. Soils in most wheat fields are too dry to germinate double-crop soybean seed now. —Emerson Nafziger

### REGIONAL REPORTS

Extension center educators, unit educators, and unit assistants in northern, west-central, east-central, and southern Illinois prepare regional reports to provide more localized insight into pest situations and crop conditions in Illinois. The reports will keep you up to date on situations in field and forage crops as they develop throughout the season. The regions have been defined broadly to include the agricultural statistics districts as designated by the Illinois Agricultural Statistics Service, with slight modifications:

- **North (Northwest and Northeast districts, plus Stark and Marshall counties)**
- **West-central (West and West South-west districts, and Peoria, Woodford, Tazewell, Mason, Menard, and Logan counties from the Central district)**
- **East-central (East and East South-east districts [except Marion, Clay, Richland, and Lawrence counties], McLean, DeWitt, and Macon counties from the Central district)**
- **South (Southwest and Southeast districts, and Marion, Clay, Richland, and Lawrence counties from the East Southeast district)**

We hope these reports will provide additional benefits for staying current as the season progresses.

#### Northern Illinois

Thunderstorms went through the region on Monday afternoon and evening. June 18. Recorded precipitation was quite variable, with the following amounts reported by Extension educators: Ogle County, 0.2 to 2.2 inches; Lee County, Dixon area, 0.7 inch; Bureau County, Walnut area, 0.8 to 1.2 inches; Grundy County — north of Morris, up to 1.7 inches, south of Morris, 0.2 to 0.3 inch; Kendall County — Yorkville, 0.5 inch, Plattville, 1.8 inches; Winnebago, 1.7 inches; Whiteside County, Morrison, 0.3 inch. The crops have responded very well to the rainfall and moderate temperatures.

Growers are reminded to promptly monitor non-Bt corn fields throughout the region for potential European corn borer infestations. Soybean aphids are being found in soybean fields but at very low levels. The moderate temperatures and rainfall can contribute to increased soybean aphid population buildup in the near future. Extension educators began this week to monitor for Western bean cutworm moth flights and will conduct some follow-up field scouting at the trap locations.

#### Southern Illinois

It is hot and dry!

Wheat harvest is almost done. Yields have been variable but better than expected, often in the 45- to 60-bushel range.

Most corn fields are in the defensive mode. It is easy to identify the fields that were planted too wet or compacted.

Soybeans are still growing fairly well, and early plantings will soon be in the reproductive stage.

Japanese beetles and small grasshoppers are becoming numerous.

#### West Central Illinois

Producers continue to watch the skies for rain as crops are showing signs of drought stress.

Soybeans are now at V4–V5 in the earliest-planted fields. Reports of scattered soybean aphids have been made, and Rhizoctonia root rot is showing up in fields in Menard, Montgomery, and Sangamon counties.

Corn is near tasseling in early-planted fields across the area. Western corn
rootworm larvae can be found feeding on corn roots. They range in size from first to third instar larvae. Drought stress is apparent in corn fields as some leaves begin to roll up midmorning during the heat. Reports suggest that Japanese beetles are emerging in the area.

Wheat harvest started around June 14 in the southern part of the region. Test weights ranging in the mid- to upper 50s, small kernels, and low moisture seem to be common. Double-crop soybeans are being planted with the forecast of rain early this week. If moisture does not come soon, producers may wait until after a rain to finish planting.

Hay harvest is mostly complete. Producers were busy cutting and baling forages in unusual places, including grassed waterways and open lots. Most producers reported having only two-thirds of their normal harvest.

Contributing Authors

Greg Clark (gmclark@uiuc.edu), Extension Crop Systems, 815-772-4075

Mike Gray (megray@uiuc.edu), Extension Entomology, 217-333-6652

Aaron Hager (hager@uiuc.edu), Extension Weed Science, 217-333-4424

Emerson Nafziger (ednaf@uiuc.edu), Crop Sciences, 217-333-4424

Kevin Steffey (ksteffey@uiuc.edu), Extension Entomology, 217-333-6652