Time for Alfalfa Watch

Alfalfa producers, consultants, and dealers across Illinois can benefit now from the Alfalfa Watch project, which provides information about plant development and quality and helps with timing the first cutting. Alfalfa plant growth and nutrient quality indicators are reported twice weekly at the Illinois Predictive Equations for Alfalfa Quality (PEAQ) Web site (peaq.traill.uiuc.edu).

People involved with the Alfalfa Watch project estimate preharvest quality in the field using the PEAQ technique, which involves predicting fiber and relative feed value (RFV) based on the height of the tallest stem and the stage of plant maturity in a sampling area. The method, developed at the University of Wisconsin, has been used in Illinois for 12 consecutive years; it is a reliable guide for determining the optimal harvest date for the first cutting. At the Web site you can calculate PEAQ, enter and track your own PEAQ values, and view PEAQ values by Illinois county and region.

To obtain 150 RFV of harvested forage, you need to cut alfalfa at 165 to 170 RFV (predicted using PEAQ), because about 15 to 20 RFV units are lost during harvest and storage. Some fields in southern Illinois are at this point or rapidly approaching it. A change of 3 to 5 points of RFV per day in the standing forage has been noted, so adjustments need to be made for total harvesting time. The adjustment means that alfalfa may have to be harvested prior to 165 to 170 RFV as indicated by PEAQ.

PEAQ is not designed to balance rations, nor does it account for quality changes due to wilting, harvesting, or storage. The procedure is most accurate for good, healthy stands of pure alfalfa. Many alfalfa seed companies have PEAQ measuring sticks that indicate the RFV of standing alfalfa based on height and stage of maturity.

Lastly, producers need to balance the PEAQ technique with short-term weather forecasts. Timely harvest of alfalfa is one of the best approaches for obtaining high-quality forage.—Jim Morrison

Insect Resistance Management Program on DTN

On May 2, Greg Horstmeier, DTN (Data Transmission Network) production editor, emceed a 50-minute program about insect resistance management (IRM) on WebEx. Approximately 50 people listened to the live program, which was recorded and can be accessed at https://dtn.webex.com/dtn/lsr.php?AT=pb&SP=EC&rID=4594732&rKey=1FB0196C6A6009CC. Presenters were Kevin Steffey, extension entomologist at the University of Illinois; Nick Storer of Dow AgroSciences, chair of the Agricultural Biotechnology Stewardship Technical Committee; and Martin Barbre, corn grower near Carmi, Illinois, and chair of the National Corn Growers Association Biotech Working Group. Topics discussed included the following:

- Background and rationale for non-Bt corn refuges in an IRM strategy
- Past and current use of Bt corn
• Explanation of the Agricultural Biotechnology Stewardship Technical Committee

• Specific refuge requires for corn borer Bt corn, corn rootworm Bt corn, and “stacked” hybrids

• IRM Compliance Assurance Plan

• Statistics about compliance by planting non-Bt corn refuges

• IRM education by the National Corn Growers Association (resistance management e-learning, instructor-led training, and self-running instructor-led training)

The program concluded with a brief question-and-answer session.

Educators and scientists with land-grant universities and seed companies have for years emphasized the importance of and need for IRM strategies for Bt corn. Since the mid-1990s, the NCGA has been involved in the education process, and they have done a stellar job emphasizing the importance of IRM and making information readily and easily accessible. During the rainy weather while waiting for corn planting to resume, take an hour or so to refresh your knowledge about IRM for Bt corn. Implementation of IRM strategies is in everyone’s best long-term interests.—Kevin Steffey

Time to Crank Up the Vigilance for Armyworms

The potential for an armyworm outbreak has been simmering over the past couple of weeks. Although the numbers of adults captured in pheromone traps near Princeton, Kentucky, declined recently, the numbers of potential larvae from the record-setting adult captures near the end of April are what we need to watch. Extremely large numbers of adults were captured in early May near Lexington, much farther east. You can view the captures of armyworm adults in Kentucky graphically at www.uky.edu/Ag/KPNPrinceton/counts/taw/tawgraph.htm. The extension entomologists at the University of Kentucky wrote useful articles about armyworms in both corn and wheat in the April 28 issue of Kentucky Pest News (www.uky.edu/Ag/kpn/kpnhome.htm).

The situation with armyworms in Illinois has not been as dramatic; the pheromone traps in southern Illinois have not captured record numbers of adult armyworms this year. The captures of note among the five traps in southern Illinois were in Franklin County (196 and 109 adults during the weeks ending April 29 and May 5, respectively). It is entirely possible that the armyworm threat will be more significant to our east. Nonetheless, vigilance for armyworm larvae right now and continuing for a couple of weeks will pay dividends if infestations are observed early rather than too late (i.e., after considerable defoliation). Based on one report from Kentucky, very small armyworm larvae (about 1/4 to 1/2 inch) were found in a cornfield in Carlisle County, just south of the southern tip of Illinois. The field had been planted no-till into burned-down weeds (May 5, 2008, Kentucky Pest News, www.uky.edu/Ag/kpn/kpn_08/pn080505.htm#arm).

People in southern Illinois should be on the alert for small armyworm larvae feeding on the leaves of plants in wheat fields, grass pastures, and cornfields. The most recent serious outbreak of armyworms in Illinois (and in many other states as well) occurred in 2001. We received our first reports of armyworm activity in early May that year, and by mid-May we were in the middle of a full-blown outbreak. The articles we published in the Bulletin in 2001 contain a lot of information that might be worth reviewing now. You can find the articles by clicking on “Past Issues” on the main page of the Bulletin (ipm.uiuc.edu/bulletin/past-issues.php), then on “Check out issues published prior to 2004.” In 2001, issues 6 (May 4), 7 (May 11), 8 (May 18), and 9 (May 25) have articles with a lot of biological, ecological, and management information. However, don’t use the insecticides suggested for armyworm control in those 2001 issues. Up-to-date recommendations for 2008 can be found in the 2008 Illinois Agricultural Pest Management Handbook, Chapter 1 (www.ipm.uiuc.edu/pubs/iapmh/01chapter.pdf), tables 1 (corn, page 4), 5 (small grains, page 19), and 6 (grass hay or pasture, page 20). Not included in Table 6, however, is Mustang Max, which is labeled for control of armyworms in “grass forage, fodder, and hay group and grass grown for seed.” The rates of application for armyworm control are 2.8 to 4 oz per acre.

As I stated previously, we might miss the brunt of an outbreak in Illinois, but predicting what will happen with insect populations is always influenced by other circumstances. With continued wet weather, it is possible that fungal disease pathogens could suppress armyworm populations. Other disease pathogens (e.g., viruses) and parasitoids could also take their toll in armyworm populations. However, when it comes right down to it, you will know what’s going on only if you scout regularly and frequently over the next couple of weeks.—Kevin Steffey

Watch for Other Insect Pests of Wheat, Too

While scouting for armyworms in wheat fields, one should also be on the alert for other insect pests that show up about this time of year. We have received one report of a severe infestation of Hessian flies in a wheat field in southern Illinois, a report that I intend to follow up on next week. The Hessian fly usually is of little concern for most wheat growers because they plant varieties with resistance to it. However, Hessian flies are notorious for developing biotypes that can overcome the most widespread genes for resistance, so we should always be on the alert. Also, wheat growers have largely ignored fly-free dates when planting wheat during the fall in recent years. Wheat planted before the fly-free date in a given area is always
more susceptible to infestation by Hessian flies and aphids.

Hessian fly larvae are glistening white, maggot-like, and small, about 1/6 inch long when fully grown. They can be found feeding beneath the leaf sheaths at the bases of plants and just above nodes. The maggots use their mouthparts to suck up plant juices. Injured plants become stunted, and larval feeding prevents normal elongation of internodes. Hessian fly injury reduces the quantity and quality of the grain. When the larvae finish feeding, the brown puparia develop in preparation for adult emergence.

Although no one has yet reported to us finding cereal leaf beetles, now is about the time they start to show up. We have no good photographs of cereal leaf beetle adults or larvae, so you might want to check out images on the Web. You will find that the adult beetle is colorful—metallic blue-black head and wing covers, rust red legs and prothorax (segment just behind the head). The larva is slug-like, with brown-black head and legs and yellow-orange body. The color of the body, however, is often hidden by a dark glob of mucus and fecal matter, which is believed to repel predators (you think?).

Both larvae and adults feed on wheat foliage, though feeding by the adults usually is not economic. The larvae eat long strips of tissue from between the leaf veins, usually leaving only the transparent lower leaf surface tissue. Heavily damaged fields appear frosted.

In-depth information about armyworms, cereal leaf beetles, and Hessian flies as well as many other insect pests of small grains can be found in the Handbook of Small Grain Insects published by the Entomological Society of America, available from APS Press (www.shopapspress.org/haofsmgrin.html). This handbook is an excellent resource for anyone interested in the most current knowledge associated with insect management in wheat and other small grains.—Kevin Steffey

Late Corn Planting—How Will Some Key InsectsRespond?

Across much of the Corn Belt this spring, the progress of corn planting is considerably behind the 5-year average, and we’ve received inquiries about the potential effects of the significant delays on insect pests. There is no one simple answer due to the different life cycles, biology, and uniqueness of each pest. Provided here are some thoughts on several insect pests of corn and the effects that late planting may have on their importance this season.

Corn rootworms. Corn rootworm larvae typically hatch in late May. In some very cool and wet springs, I’ve witnessed hatch as late as mid-June. If corn planting were delayed until late May, some starvation of larvae would occur, especially of larvae that hatched from eggs early. Generally, early planting (April through early May) tends to favor good establishment of corn rootworm larvae.

European corn borer. With the extensive use of Bt hybrids, this insect has almost become a “forgotten pest” of corn. By late May through early June, we should begin to see moths seeking to lay egg masses on corn plants. Egg laying occurs during the evening hours. Early planting tends to favor good establishment of the first generation of corn borers. Later planting promotes better establishment of the second generation.

Black cutworms. Late planting of corn tends to promote more problems with black cutworms. Fields that are tilled later in the spring and subsequently planted are often prime targets for good establishment of black cutworms. Migrating moths prefer to lay their eggs in fields with abundant winter annual weed cover. Larvae that can go through several molts on weeds may be able to inflict significant injury on some corn seedlings.

White grubs. Years ago, when it was less common to plant as much corn in April as we’ve come to expect in recent years, annual white grubs (including Japanese beetle grubs) were not considered significant threats to corn production. Producers were advised to look at rasters of white grubs and determine whether annual or true white grubs (*Phyllophaga* spp.) were present in a given field.

Because true white grubs feed all summer long during the second year of their life cycle, they can cause economic damage to stands of corn. Annual white grubs were considered less of a threat due to the shorter period in which corn seedlings were exposed to root hair pruning. However, corn planting in early April elevates the pest status of annual white grubs. This year, annual white grub injury should be more limited and the focus will return to true white grubs. Cold, wet soils also may delay grub development and result in longer exposure of corn seedlings to root hair pruning by larvae.

Wireworms. Delayed planting and cool, wet soils may result in greater densities of wireworms remaining in the upper soil profile and feeding on root systems of corn seedlings. In addition to direct seed tunneling, wireworms have the potential to feed within the growing point tissue of plants. If this occurs, significant stand reductions may result. This season might be a very good test of the reliability of the insecticidal seed treatments on Bt seed.

Seedcorn maggots. Late planting of corn into cool and wet soils will increase the risk for seedcorn maggot injury to corn seedlings. Fields with an abundance of decaying organic matter, especially those with frequent manure applications, are particularly vulnerable to stand reductions.

Let’s hope for some favorable planting weather over the next several weeks. We look forward to learning from readers if significant problems with any of these insect pests begin to take shape this spring.—Mike Gray
WEEDS

Glyphosate-Resistant Waterhemp Recommendations Available to Download

Successful management of glyphosate-resistant waterhemp will require careful consideration and implementation of multiple management tactics (obviously, more than exclusive reliance on glyphosate). Weed scientists at the University of Illinois have developed recommendations that address this specific issue for the 2008 soybean crop. The recommendations were first published in the Bulletin on March 21, 2008 (Issue 1, “Glyphosate-Resistant Waterhemp in Illinois: Recommendations for Management”) in an article modified from the proceedings of the 2008 University of Illinois Corn & Soybean Classics (www.cropsci.uiuc.edu/classic/C_S_Classic_2008.pdf).

We’ve continued to explore other avenues for disseminating these recommendations. A condensed format is available to download as a PDF file from the University of Illinois Weed Science Web page (weeds.cropsci.uiuc.edu) and IPM Web page (ipm.uiuc.edu). The document outlines the four-step approach we believe will reduce the pernicious impact of glyphosate-resistant waterhemp in Illinois soybean fields. Considerations for the recommendations are also provided, albeit in a much-abbreviated form compared with the original publication. If you have any questions about these recommendations, we encourage you to contact us or peruse the original, full-length version in the proceedings.—Aaron Hager and Dawn Refsell

University of Illinois Weed Science Field Research Tours

We invite you to make plans to attend the 2008 University of Illinois Weed Science Field Day on Wednesday, June 25, at the Crop Sciences Research and Education Center, located immediately south of the main campus. Coffee and refreshments will be available under the shade trees near the Seed House beginning at 7:30 a.m.

We’ve made a few changes this year to the format of the field day. We have invited our entomology and plant pathology colleagues to join us during the morning registration period. Drs. Kevin Steffey, Mike Gray, and Carl Bradley will offer brief remarks about their respective areas of research. They will also give their perspectives on current pest management situations around the state.

At the conclusion of their remarks, we will carpool to the fields for participants to join in a guided (but informal) tour to look at research plots and interact with weed science faculty, staff, and graduate students. Participants can compare their favorite corn and soybean herbicide programs with other commercial programs and get an early look at some new herbicide active ingredients. The tour will conclude around noon; note that there will not be an on-site lunch this year.

The cost for the Urbana weed science field tour is $10, which helps defray the cost of the field tour book and refreshments. We will apply for 2 hours of CCA credit under the IPM category.

The DeKalb weed science tour will again be part of the Dekalb Agronomy Day, to be held Thursday, July 17, beginning at 4:00 p.m. The format will be similar to previous years, and there will be many plots available to view. Refreshments and a weed science tour booklet will be provided; food will be available for a nominal fee. CCA credits are typically available.

We are continuing field research work at the Perry, Brownstown, and Dixon Springs research centers along with a few on-farm locations. There will be no formal weed science tours at these locations. Check with your local University of Illinois Extension office or watch the Bulletin for general agronomy field day dates at these locations.

We look forward to visiting with you at the Urbana and Dekalb weed science field days. Please contact us at 217-333-4424 if you have any questions.—Aaron Hager, Dawn Refsell, Doug Maxwell, Lisa Gonzini, and Joshua Kunkel

PLANT DISEASES

Folicur Fungicide Registered for Use on Wheat in Illinois

Recently, Folicur (tebuconazole) fungicide from Bayer CropScience received a full section 3 registration on wheat. Illinois registration of the product has already occurred, and the state’s wheat growers can now apply this product.

The addition of Folicur gives Illinois wheat growers another efficacious product to control Fusarium head blight (scab). Caramba from BASF was recently registered for use on wheat (see the Bulletin, issue 6, May 2, 2008), and Proline fungicide was registered for use on wheat in 2007. Results of multiple university trials over several years, sponsored by the U.S. Wheat and Barley Scab Initiative and summarized by Dr. Pierce Paul at Ohio State University, indicate that all three products are effective at reducing scab severity and associated mycotoxins in the harvested grain. The summary also indicated that a mixture of Folicur and Proline (3 fl oz of each product) may be more effective than either Folicur or Proline alone, and a 2(2e) recommendation from Bayer CropScience for this mixture is available.

For more information about managing Fusarium head blight, refer to “Managing Fusarium Head Blight of Wheat” in issue 3 of the Bulletin (April 11, 2008). Wheat heads are beginning to emerge in parts of southern Illinois. The most effective fungicide application timing for control of Fusarium head blight is at early anthesis (Feekes 10.5.1). Check the Fusarium head blight risk map tool at www.wheatscab.psu.edu to determine the level of risk in your area.—Carl A. Bradley
Corn and Soybean Planting: Issues Remain

The official (NASS) estimate for Illinois showed that only 28% of the corn crop and 1% of the soybean crop were planted by May 4. This compares with 5-year averages by this date of 76% for corn and 11% for soybean. Still, we made some progress, having planted 22% of the corn crop during the last week. And there has been considerable planting over much of the state in the past few days.

As we see the days going by with many fields still to plant, some may be wondering whether it might be too late for the “full-season” hybrid they chose to mature if it’s planted only by mid-May. In all but rare cases, there is little cause for concern. Most hybrids sold as full-season for an area already have a reasonable cushion of growing degree days (GDD)—they need 200 to 300 fewer GDD (base 50°F) than are available on average from normal planting time to the average date of first frost. For example, GDD accumulations for May 1 through September 30 range from about 2,700 in northern Illinois to 3,100 in central Illinois to 3,600 in southern Illinois. Hybrids considered to be full-season typically require about 2,600 GDD in northern Illinois to perhaps 2,900 GDD in southern Illinois. So if early frost occurs, hybrids in northern Illinois could be damaged before they are fully mature, but the chance of this happening in central and southern Illinois is low.

Several other factors affect hybrid maturity and the risk of having grain-filling end prematurely. One is that GDD accumulations in May are on average rather slow, so corn planted in mid-May experiences only 200 to 300 or so GDD less by some later date than corn planted in mid-April. Corn planted later also requires fewer GDD to reach maturity than the same hybrid planted early, which adds to the cushion. In general, then, hybrids on hand for planting should not be switched out for earlier ones unless planting goes into very late May. One exception to this would be in northern Illinois, where hybrids requiring 2,700 or more GDD might have been chosen in an attempt to push for maximum use of the growing season. In our northern Illinois hybrid trials, GDD requirement and yield are often not very well correlated, suggesting that such a strategy may not pay off very often. But it would be advisable to check into the availability of hybrids requiring 150 to 200 fewer GDD than any such full-season hybrid(s) that might be on hand for places in northern Illinois where planting is not yet underway.

Soybean responds considerably less to delayed planting than does corn, and in no part of Illinois should soybean planting take precedence over corn planting at this point in time. Our data relative to soybean planting delays are not as recent or as good as those for corn, but I agree with Dr. Palle Pedersen of Iowa State University that early planting of soybean is helpful in seasons (and fields) that foster high soybean yield, while in average or poor growing seasons, there is often little or no response to planting delays past mid-May. This is likely because an early start to flowering and pod setting tends to be related to higher soybean yields, but only when late-season conditions are favorable for filling seeds. The fact that we don’t know how the season will turn out, however, means that we should try for earlier planting. With some seed of marginal quality this year and with soils continuing to show swings in temperature and moisture, we need to be careful to plant into reasonably good soil conditions and to not rush to plant before fields are ready to plant.

Soybean seeding rate continues to be an issue because of the increased cost of seed and, in 2008, the quality of available seed. Most seed is still sold by weight, though the seed size (measured by weight as number of seeds per pound) is usually specified. The standard recommendation that many agronomists now use is based on the fact that few studies have shown further yield increases as the number of plants (not seeds) increases above 100,000 per acre. On the other hand, the record-setting soybean yield (154 bushels per acre) produced under irrigation in Missouri in 2007 came from a seeding rate of around 300,000 seeds per acre and a reported stand of about 250,000 plants. This raises the question of whether a stand of 100,000 plants is really enough when conditions are right for very high yields. We haven’t produced yields anywhere close to the record yield, so we don’t know the answer to this question.

We do know that increasing seeding rates above 150,000 per acre, when establishment is 75% or higher, has seldom produced yield increases in our trials. While 100,000 may be the plant number that produces maximum yields under most conditions, it’s usually best to try to establish plant stands of at least 120,000. This will help compensate for poor conditions that can reduce emergence and for water shortage later that can reduce plant growth and canopy development. It is definitely the goal to have full canopy cover by the start of seed filling; reduced vegetative growth, especially in wider rows, can make this difficult. Late planting often reduces the duration and amount of vegetative growth, so narrowing rows for late planting is often helpful.

The need to get a good stand is greater when soybeans are planted late, since replanting late-planted soybean is more costly in terms of yield than replanting early-planted ones. Adjusting soybean seeding rate for planting conditions might involve some guesswork, but it is a reasonable approach. You might check out the seed drop calculator at iah.aces.uiuc.edu/index.php?ch=drop.html&s=soy to see how to make adjustments. Be sure to note the warm germination percentage provided with the seed, and adjust the seeding rate by dividing target stand by germination percentage (for example, divide target stand by 0.85 if the warm germ is listed at 85%) at
the start of the rate-setting calculation. The calculator will help with this.

A note on the Illinois wheat crop: cool temperatures have delayed development but have increased tilling, and much of the crop in central and southern Illinois is in great shape as heading gets underway. Only 5% of the wheat crop was headed by May 4, compared to an average of 30% by that date. Watch for Fusarium head blight (scab) if it is wet at heading, for leaf diseases if it stays wet after heading, and for outbreaks of insects, especially armyworm and cereal leaf beetle, in heavy canopies. The relatively cool temperatures that have been good for wheat development also mean that an early harvest and start to double-cropping is not very likely. As a rule of thumb, it is at least 6 weeks from heading to harvest in southern Illinois, and it will likely be much less than this only if it gets very warm, which can hurt wheat yields. Otherwise, the main wheat problem so far this season was in some fields in northern Illinois that were badly damaged by water and ice over the winter. Some fields have been destroyed already in preparation for planting corn or soybean. The variety trial at our research center near DeKalb, which did not survive well enough to get yield data, will soon join them. — Emerson Nafziger

REGIONAL REPORTS

Extension center educators, unit educators, and unit assistants in northern, west-central, east-central, and southern Illinois prepare regional reports to provide more localized insight into pest situations and crop conditions in Illinois. The reports will keep you up to date on situations in field and forage crops as they develop throughout the season. The regions have been defined broadly to include the agricultural statistics districts as designated by the Illinois Agricultural Statistics Service, with slight modifications:

- North (Northwest and Northeast districts, plus Stark and Marshall counties)
- West-central (West and West South-central districts, plus Peoria, Woodford, Tazewell, Mason, Menard, and Logan counties from the Central district)
- East-central (East and East South-central districts [except Marion, Clay, Richland, and Lawrence counties], McLean, DeWitt, and Macon counties from the Central district)
- South (Southwest and Southeast districts, and Marion, Clay, Richland, and Lawrence counties from the East Southeast district)

We hope these reports will provide additional benefits for staying current as the season progresses.

Eastern Illinois

Fieldwork continued at a rapid pace. In the Champaign–Bloomington–Decatur area many farmers have finished corn planting, and the rest are well on their way. The first planted fields are starting to emerge and look very good. Soybean planting has started. Wheat fields are at Feekes stage 7–8.

Don Frederick, University of Illinois Extension county director from the southern end of the east-central region (the Newton–Effingham area), reports that “a bunch of headway has occurred since last Wed. in regard to corn planting. We had no major weather interruptions and many acres of corn have been planted in the past 7 days. I would say this end of the EC Region is at or near 80% planted. I know of no activity regarding the planting of soybeans at this time. We have had some spotty showers this morning and I would say most everyone welcomed them.”

Northern Illinois

Fieldwork has been common throughout the region from last weekend until it was halted in many areas due to precipitation on May 7. Corn planting was the main activity, followed by secondary tillage, fertilizer application, and herbicide application. Emerged winter annuals are very common in untilled fields.

Extension educators monitoring black cutworm moth traps continue to report captures throughout the area. However, only one intense moth capture (9 or more moths captured over two consecutive days) was reported, on May 5 in Lee County.

Jim Morrison, crop systems extension educator, reports wheat at Feekes stage 6 and alfalfa at 16 to 17 inches high in northwestern Illinois. Remember that the suggested alfalfa seeding deadline in northern Illinois is approximately May 10.

Southern Illinois

Drier weather during the past week has allowed growers to finally make measurable progress in the field. Herbicide applications, seedbed preparation, nitrogen applications, and corn planting were all going on at a hectic pace. The latest planting report estimates that around 17% of the corn was in the ground in the south on May 5. Thunderstorms rolling through on Wednesday and early Thursday put another damper on further progress.

Wheat is at Feekes stage 10. A number of fields received fungicide applications early in the week to control foliar diseases. Tan spot can be found on the lower canopy, and viral disease symptoms can be found on some varieties. As wheat approaches flowering during the upcoming week, the potential for Fusarium head scab will increase. Penn State University has a Web-based scab prediction tool that can help growers make fungicide application decisions: click on “risk map tool” at www.wheatscab.psu.edu.

Alfalfa is at the early bud stage, and harvest has begun as growers try to get it out of the field between rain showers. Alfalfa weevils are causing noticeable damage in many fields, so fields that are harvested rather than treated with an insecticide should be closely monitored during the upcoming week to insure that regrowth isn’t being affected by continued weevil feeding.
West-Central Illinois

Corn planting varies widely throughout the region based on rainfall events of the past two weeks. In the extreme west, progress has been hampered by frequent rains, and a number of producers have yet to plant any of the crop. As you progress eastward, more progress has been made, and some producers are very close to completion of corn planting. Corn has been extremely slow to emerge due to cold soil temperatures. Some of the crop was planted under somewhat poor soil conditions, which may hamper emergence as well, as the drying soils are becoming very dense.

Alfalfa growth has not been hampered by these cooler and wetter conditions. Growth has been excellent. Grass growth has been noticeably slower, possibly because it has been under severe stress the past two years due to very dry soil conditions and overgrazing. Some producers are reporting loss of orchardgrass stands in pastures.

Wheat growth has been excellent as well, with very little disease development noted. The most advanced fields are at Feekes 8 (flag leaf emerged).

Black cutworm moth flight has been reported as rather strong for the past 2 to 3 weeks.

Contributing Authors

Carl A. Bradley (carlbrad@uiuc.edu), Extension Plant Pathology, 217-244-7415

Mike Gray (megray@uiuc.edu), Extension Entomology, 217-333-6652

Aaron Hager (hager@uiuc.edu), Extension Weed Science, 217-333-4424

Jim Morrison (morrison@uiuc.edu), Extension Crop Systems, 815-397-7714

Emerson Nafziger (ednaf@uiuc.edu), Crop Sciences, 217-333-4424

Dawn Refsell (drefsell@uiuc.edu), Extension Weed Science, 217-333-4424

Kevin Steffey (ksteffey@uiuc.edu), Extension Entomology, 217-333-6652