Don’t Forget to Mark Your Calendar for the First Illinois Ag Masters Conference

The first Illinois Ag Masters Conference will be held on December 1 and 2, 2009, in Champaign, at the new I Hotel and Conference Center, located just across St. Mary’s Road from the Assembly Hall. On day 1, participants will hear outstanding speakers in a large general session. The topics should be of interest to certified crop advisers and other ag professionals throughout the state and region. Day 2 will feature advanced sessions, with enrollments limited to 30 participants each. We intend to offer each of these classroom-style sessions twice. Instructors will challenge participants with the latest research findings across multiple disciplines (e.g., agronomy, entomology, plant pathology, weed science). Professors from the University of Illinois and other institutions will engage participants in analyzing peer-reviewed journal articles and will lead discussions on the implications and relevance of these scientific findings to rapidly evolving agricultural management practices and issues.

The precise number of advanced classes is still being determined, but we anticipate approximately 120 registrants for day 2. Enrollment will be capped and be on a first-come, first-served basis. The conference will feature a two-tiered registration system—you can register for the first day (general session) only, for the second day (advanced sessions) only, or for both days. Costs are still being determined, but participants who register for both days will receive a discount.

As the planning for this new conference continues, we will provide updates about developments in the Bulletin and through other media. Until we develop an on-line registration site (later this summer), please do not attempt to register for the conference yet. For now, place a hold on your calendar for December 1 and 2. We look forward to an exciting event.—Mike Gray

INSECTS

Alfalfa Weevils—One of Our First Indicator Insects of the Season

Despite the cold, wet weather recently and the slow start to the growing season, enough degree-days have accumulated in the southern half of Illinois that alfalfa weevil larvae could be active very soon. As of April 14, 200 degree-days (above a base temperature of 48 °F) had accumulated since January 1 along a line roughly dissecting Illinois from Pike County in the west to Edgar County in the east. We recommend that alfalfa growers in southern Illinois begin to search for signs of alfalfa weevil when approximately 150 to 200 degree-days have accumulated. Alfalfa growers elsewhere can wait to begin their search until approximately 300 degree-days have accumulated. Following is the explanation for this disparity.

Because temperatures in southern Illinois in the fall and winter are relatively warmer than elsewhere in the state, alfalfa weevil adults (which overwinter throughout the state) may become active on warm days and lay eggs. Conse-
quently, larvae hatch from eggs deposited in the fall earlier than from eggs deposited in the spring. So two distinct peaks of alfalfa weevil larval activity usually occur in southern Illinois, one from fall-deposited eggs and the other from spring-deposited eggs. Hatching of larvae from overwintering eggs usually occurs when 200 degree-days accumulate beyond January 1. An early peak of third-stage larvae from overwintering eggs occurs after an accumulation of 325 degree-days; a second major peak of third-stage larvae from spring-deposited eggs occurs after an accumulation of 575 degree-days.

To check out the relationship between temperatures and alfalfa weevil activity, go to the “Daily Pest Degree-Day Accumulations” page at the Water and Atmospheric Resources Monitoring Program (WARM) website at www.isws.illinois.edu/warm/pestdata. You can click on “Calculator” or “Maps,” depending on the type of information you seek—specific sites or regional, respectively. For more information about alfalfa weevils (description, life cycle, scouting, management), go to the “Alfalfa Weevil” fact sheet at our IPM website (www.ipm.uiuc.edu/fieldcrops/insects/alfalfa_weevil). Thus far, we have received no reports of alfalfa weevil activity, but it’s only a matter of time. So in the midst of the forthcoming corn-and-soybean planting efforts, don’t forget about alfalfa weevils.—Kevin Steffey

A Rather Steady Flow of Black Cutworm Moths

Since our first report of captures of black cutworm moths in pheromone traps (issue no. 1 of the Bulletin, March 19), we have received a rather steady flow of capture reports. This is not surprising given the storm fronts that have passed through Illinois over the past couple of weeks. Black cutworm moths take advantage of these weather systems to migrate into the state. When the females “drop out” into Illinois (and elsewhere in the Midwest, for that matter), they seek sites for oviposition, often fields with winter annual weeds.

We have received reports of intense captures of black cutworm moths (9 or more moths in a 1- to 2-night trapping period) from four locations on the following dates: April 4 (Piatt County), April 10 (Brown and Lee counties), and April 14 (Marion County). These intense captures can be used to trigger projections for the first signs of larval cutting activity in prescribed locations. For example, if you visit the “Degree-Day Calculator” page at the at the Water and Atmospheric Resources Monitoring Program (WARM) website (www.isws.illinois.edu/warm/pestdata/sqle.aspx?plc=), you can choose black cutworm and the Perry weather station to determine when cutting likely will occur based on the intense capture in Brown County (April 10). On April 15, I entered the date of the intense capture (April 10) and learned that the projected date of 300 degree-days (above a base temperature of 50 °F) was May 17. (First cutting by larvae usually is observed when approximately 300 degree-days have accumulated.) Similar information submitted for the intense capture in Marion County (April 14) suggested that the projected date of 300 degree-days in the Fairfield area was May 12.

So mid-May is currently our target for ramping up scouting efforts for black cutworms. However, it’s not a bad idea to plan for scouting even earlier. Before cutting occurs, early signs of black cutworm activity—pinhole feeding injury on seedling leaves—can prepare you for something more serious. For more detailed information about black cutworms, go to the “Black Cutworm” fact sheet at our IPM website (www.ipm.uiuc.edu/fieldcrops/insects/black_cutworm). All of this speculation about black cutworms, however, also depends on dates of corn planting. If the weather cooperates soon and the percentage of acres of corn planted increases dramatically over the next couple of weeks, we’ll soon be in the thick of black cutworm larval activity. We’ll talk more about management of black cutworms in future issues of the Bulletin.—Kevin Steffey

Insect Trapping Network? Presently Scattershot, But Poised to Reemerge

In the early 1980s, we entomologists implemented a formal network of cooperators to monitor for black cutworm moths as they flew into Illinois from southern locations. The network proved to be an excellent way to obtain information that would aid in determining the potential threat posed by black cutworms during any given year, depending on the weather, planting conditions, weediness, etc. Over time, coordination of this effort passed from hand to hand, but the numbers of cooperators declined. Ultimately, the formal network disappeared, primarily due to a lack of funding, although efforts to capture black cutworm moths have continued through the mostly scattershot efforts of a few intrepid volunteers, including several University of Illinois Extension educators and specialists. Over all of those years, several volunteers also monitored for other insect pests—such as corn earworms, European corn borers, and western corn rootworms—and provided us with the information.

In more recent times (2005 and following), we established a network of volunteers to monitor for western bean cutworm moths, an insect pest of corn found in Illinois for the first time in 2004. The results from those trapping efforts have been reported voluntarily through Iowa State University’s “Western Bean Cutworm Monitoring Network” website (www.ent.iastate.edu/trap/westernbeancutworm).

The last two formal insect trapping networks coordinated by University of Illinois specialists were the “Illinois Insect Monitoring Network” (black cutworm, corn earworm, European corn borer) and “The Hines Report” (armyworm, black cutworm, European corn borer, fall armyworm, Japanese
beetle, southwestern corn borer). The first was coordinated by Kelly Cook (now Kelly Estes) until she took a position as the state survey coordinator, Illinois Cooperative Agriculture Pest Survey (CAPS), with the Illinois Natural History Survey. The second, established in about a half dozen southern Illinois counties, was coordinated by Ron Hines until he took a position a couple of years ago with Growmark. Neither network exists today.

So where are we right now in sharing information about important insect pests that can be monitored with traps? Unfortunately, we are mostly in a scattershot mode, but things are looking up. As part of a larger IPM grant proposal effort, Dr. Carl Bradley and I submitted a proposal for “Partnerships in Areawide Pest Monitoring” that includes components for insect trapping and for monitoring both insects and plant diseases. We anticipate that we will receive funding, although not soon enough for early-season establishment of traps for insects such as armyworm and black cutworm. Other insects to be included in our trapping and monitoring are corn earworm, European corn borer, fall armyworm, Japanese beetle, multicolored Asian lady beetle, southwestern corn borer, soybean aphid, western bean cutworm, and western corn rootworm. We anticipate devoting a website to reporting the information, an effort somewhat patterned after the University of Missouri’s “IPM Pest Monitoring Network” website at ppp.missouri.edu/pestmonitoring. (After all, I am a Missouri alum: M.S., 1975.)

In the meantime, we will provide any information that comes our way from volunteers who continue to monitor for insects and send us their findings—refer to “A Rather Steady Flow of Black Cutworm Moths” in this issue of the Bulletin. We invite anyone who uses traps to monitor for insects to let us know what they find. Sharing such information helps everyone. When our formal network is in place, we will make the announcement in the Bulletin.—Kevin Steffey

Germany Prohibits the Use of Bt Corn (MON 810)

The saga of Europe’s cool reception to transgenic crops intensified recently (April 14) when Germany’s Agriculture Minister, Ilse Aigner, indicated that she would no longer allow the cultivation of Bt corn (MON 810) in Germany. Corn hybrids (YieldGard) with the MON 810 event produce the Cry1Ab protein toxic to several lepidopteran pests, particularly European corn borers. Corn expressing the Cry1Ab protein (MON 810) has been approved by the European Union since 1998; however, several European countries have now banned the use of the hybrids with this event. These developments come at a time when the use of Bt corn hybrids, especially those with multiple events (stacked hybrids), is soaring across the United States. Although the Cry1Ab protein expressed by MON 810 corn hybrids is not effective against corn rootworms, it will nonetheless be interesting to see if Europe’s acceptance of transgenic hybrids changes as western corn rootworms continue to disperse across the continent (20 countries as of 2007).—Mike Gray

Residuals and Resistance: On the Minds of Weed Management Practitioners

Extension weed scientists across much of the United States have expended considerable time and effort exhorting the benefits and advantages of integrating multiple weed management tactics, including the use of soil-residual herbicides, into glyphosate-resistant corn and soybean production systems. Two advantages of using soil-residual herbicides are reducing early-season weed interference that can lead to loss of crop yield potential and reducing the intensity of selection for herbicide-resistant weed populations. Other benefits, including enhanced control of volunteer glyphosate-resistant corn in soybean and improved efficacy against weed species less sensitive to glyphosate, can be realized by integrating soil-residual herbicides and/or tank-mix partners in glyphosate-resistant cropping systems.

Recent evidence suggests that practitioners are in fact moving toward more integrated weed management in glyphosate-resistant soybean. During the 2009 University of Illinois Corn & Soybean Classics, attendees (about 1,150 across six meetings) were asked questions on a variety of agronomic topics. Two weed science-related questions were posed, with data gathered using the Turning Point anonymous response system. The first question was “If you grow glyphosate-resistant soybean, which of the following scenarios best describes the number of different herbicides you use to control weeds?” Four choices for an answer were offered:

- a) Glyphosate only
- b) A tank-mix partner with glyphosate
- c) A soil residual followed by glyphosate
- d) A soil residual followed by glyphosate and a tank-mix partner

Across all locations, 717 responses were collected. Beforehand, we (admittedly) supposed “glyphosate only” would be the predominant answer, but we were (pleasantly) surprised when it received only 28% of responses (199 out of 717). While we have no comparable “historical” data against which to compare, national-level surveys conducted after the first year that glyphosate-resistant soybean was commercially available indicated 8 out of 10 farmers did not use soil-residual herbicides in their weed management programs in glyphosate-resistant soybean.

The issue of glyphosate resistance in weeds also appears to be on the minds of weed management practitioners. The second question we asked at the Classics was “Do you believe glyphosate-resistant weeds will change the way you manage weeds in glyphosate-resistant cropping systems within the next 5 years?” Three choices for an answer were offered:
a) Yes
b) No
c) Don’t know

Across all locations, 877 responses were collected. An overwhelming 91% of respondents said they believe glyphosate-resistant weeds will change the way they manage weeds in glyphosate-resistant cropping systems within the next 5 years.

We hope these data are indicative that the fallacy of glyphosate’s alone being able to resolve all weed problems in corn and soybean is becoming increasingly obvious. The dynamic and adaptable nature of weeds has (again) demonstrated how difficult it can be to adequately manage weeds long-term with a singular approach. Weed scientists at the University of Illinois are collaborating with colleagues in the USDA/ARS Invasive Weed Management Unit and at Western Illinois University and Southern Illinois University to find solutions to the new challenges presented by these adaptable pests. —Aaron Hager

CROP DEVELOPMENT

Soybean Variety Selection

April brings the excitement and anxiety of planting at the start of a whole new crop year. So far, April '09 has brought below-average temperatures and above-average rainfall for most of Illinois. So if soggy soil has you inside, here are some thoughts to remember throughout the spring regarding what soybean varieties to plant.

It’s likely you decided what to plant for all or most of your acres during the winter months. However, you might need to purchase a final few bags, or you may develop additional need for soybean seed as the spring progresses. If so, don’t rush your final variety selections under the pressure of “I want to finish planting.” Selecting appropriate genetics is always the first and best way to increase your yield and profits. This is particularly true with your soybean crop because maximum yields can be achieved from a wider planting timeline than with corn. Historically, maximum soybean yields can be achieved for planting dates between the third week of April and the third week of May, with the first two weeks of May being the likely best time. I will elaborate more on planting date studies in an upcoming article, but the point today is this: Continue to take the necessary time to select varieties with the appropriate maturity, soybean cyst nematode resistance, disease resistance, and overall agronomic characteristics to match the needs of your fields and farming operation.

In addition to getting details from your local seed supplier, utilize the yield and lodging information generated by the University of Illinois Variety Testing program (vt.cropsci.illinois.edu/soybean.html). If you don’t find the soybean varieties you use on your farm, nominate a variety to be tested in the future. Additional variety information, including SCN resistance data and disease ratings, is provided by the Varietal Information Program for Soybeans, funded by the Illinois Soybean Association (www.vipsoybeans.org). Yield data for all varieties and testing locations in 2008 ranged in bushels per acre from 39.9 to 73.2 (maturity group II), 45.9 to 73.6 (group III), and 54.3 to 77.4 (group IV). Proper seed selection, then, can easily have implications of 25 to 30 bushels an acre. These are also wider ranges in yield than are typically observed for soybean planting date experiments until planting dates extend into late June. A few good hours selecting the right seed is worth more than a few good hours planting a variety resulting from a poor or hasty choice.

Please remember one final and important guideline throughout the planting season. Your grain bin full of Roundup Ready soybean seeds from last fall’s harvest is not a last-minute seed supply. The legal contract you signed when you bought the parent seeds of that harvest does not become void because you need a few more bags in a hurry. Besides, those seeds will be uncleared and untreated and will have an unknown germination rate, making using them a questionable and risky agronomic practice. —Vince M. Davis

Phosphorus and Potassium Applications This Spring

With the high price of fertilizers and the late harvest last fall, many fields did not receive the typical phosphorus (P) or potassium (K) applications. The question being asked is, Should I apply these nutrients this spring? The answer depends on several factors. The guiding principle in fertilizer decisions is that you should definitely apply nutrients when the chance for yield increase is large and the expected yield will pay for at least the cost of the fertilizer.

Soil test information is important in guiding these decisions. The critical level for a nutrient is the point at which its application will result in a significant increase in yield, or the point at which withholding its application will result in a large decrease in yield. For corn and soybean the critical levels for P and K are listed in Table 1; they vary between regions of the state. For P, the supplying power of the soil in different regions is considered (Figure 1); for K the cation exchange capacity (CEC) of the soil is taken into account (Figure 2). If your field needs a nutrient and your budget does not allow for a full application, apply at least a portion rather than none. Another alternative that can help when a full rate cannot be applied is to apply nutrients as a starter fertilizer. Of course, these practices should be viewed as temporary alternatives and should not replace a sound fertility program.

Table 1; they vary between regions of the state. For P, the supplying power of the soil in different regions is considered (Figure 1); for K the cation exchange capacity (CEC) of the soil is taken into account (Figure 2). If your field needs a nutrient and your budget does not allow for a full application, apply at least a portion rather than none. Another alternative that can help when a full rate cannot be applied is to apply nutrients as a starter fertilizer. Of course, these practices should be viewed as temporary alternatives and should not replace a sound fertility program.
habilitation withholding P and K fertilization. Also we observed that in some fields it is necessary to apply one nutrient but not the other. Applying only the nutrient that is needed rather than a blend of both is another strategy to lower costs when fertilizer prices are high.

Finally, a word on application timing. Studies have shown that applying P and K in either fall or spring is an effective method. Thus, there is no problem if you didn’t apply these nutrients in the fall and plan to do it in the spring. Studies have also shown that as long as you apply adequate amounts for both corn and soybean, there is no difference if the application is done ahead of corn for both crops or is done annually just to feed each crop individually. Since the cost of application relative to the cost of fertilizer is smaller now, doing annual applications is certainly an option if you cannot afford the upfront cost to feed both crops. — Fabián Fernández

Are Your Corn Stands “Precise” Enough?

Many producers have heard about the dangers of “imprecise” corn seed placement and of ways to fix this with various after-market products designed to produce that “picket fence” stand that we all want. Even those who have decided not to spend the money to “upgrade” relatively new planters with such equipment wonder if this decision will cost them yield and money.

The picket-fence stand is probably not often quite as uniform in terms of plant size and spacing down the row as we imagine it to be. But we all admire a good, even stand of corn, and “precision” certainly has visual appeal. Of course, by the time plants reach their mature height, we can see “drive-by” precision mostly as the uniformity of spacing of the plants in outside rows. Plants in outside rows tend to be more uniform in size than those inside the field, because they get more water and sunlight. They also tend to be planted at slower speeds and may benefit from that as well.

Even the best-planted fields can sometimes develop uneven plant size and plant spacing as the result of conditions after planting that lead to stand loss or plant damage. Such effects can only be seen by getting out into the field, and in many cases there might be nothing that could have been done differently to avoid such problems. We have found that plants respond to loss of competition from their neighbors (that is, by loss of stand) by increasing their ear size. Of course, the increase in ear size of remaining plants can’t compensate fully for the loss of plants, so stand loss almost always means lower yields per acre.

Plant spacing variability has usually been measured as the standard devia-

Table 1. Soil test levels for P and K in Illinois.

<table>
<thead>
<tr>
<th></th>
<th>Test level (lb/A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Critical level</td>
</tr>
<tr>
<td>Phosphorus<sup>a</sup></td>
<td></td>
</tr>
<tr>
<td>Low supply power</td>
<td>45</td>
</tr>
<tr>
<td>Medium supply power</td>
<td>40</td>
</tr>
<tr>
<td>High supply power</td>
<td>30</td>
</tr>
<tr>
<td>Potassium</td>
<td></td>
</tr>
<tr>
<td>High CEC<sup>b</sup></td>
<td>300</td>
</tr>
<tr>
<td>Low CEC</td>
<td>260</td>
</tr>
</tbody>
</table>

^aTo ensure adequate fertility even in years with high yield potential, it is recommended to increase P test levels slightly above the critical level before using a maintenance program.

^bCEC: cation exchange capacity.

Table 2. Maintenance fertilizer required for corn and soybean.

<table>
<thead>
<tr>
<th>Crop</th>
<th>(P_2O_5) (lb/bu)</th>
<th>(K_2O) (lb/bu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Corn</td>
<td>0.43</td>
<td>0.28</td>
</tr>
<tr>
<td>Soybean</td>
<td>0.85</td>
<td>1.30</td>
</tr>
</tbody>
</table>
a summary of findings and thoughts on issues having to do with corn plant stand establishment and uniformity:

1. Uniformity of plant spacing in the row takes on less meaning as populations increase, and it is nearly meaningless at plant populations in common use today—that is, with average plant spacing often about 6 inches or even less. Plant spacing variability (SD) of 6 to 8 inches that some have reported is virtually impossible to produce at plant populations in the 30,000 range or higher, unless the planter malfunctions or we deliberately set out to produce such an effect.

2. The term “precise” is relative—the least precise stands today are probably better than the best stands we could produce with shoe openers and plate-type planters in the 1960s. When you can see a shifting pattern of aligned plants as you drive by a field, you know that the drop spacing was relatively uniform. One extensive measurement of spacing uniformity in a farm field produced a standard deviation of 2.4 inches, while that in a “sloppy” field nearby was 3.4 inches. This is probably about the range we can expect in fields with full stands.

3. Skips (due to missed drop or failure to germinate) and doubles contribute almost equally to nonuniformity of stand as measured by the SD. But skips and doubles have opposite effects on yield at lower populations and very little effect at high populations; they affect yield to the extent that they affect stand, and effects of stand on yield depend on where along the plant population curve the stand is.

4. If we are reaching our target population, there is almost no chance that uniformity of interplant spacing has a measurable effect on grain yield. If there is an effect, it is likely too small to spend money to correct. As a practical issue, we can never get to complete precision (SD = 0) in a field, so whether or not yield is lost from having an SD of 3 inches instead of 2 inches is not possible to answer.

5. Some data that have been used to show that uniformity of plant spacing pays are not presented correctly. One study we did with stands thinned to be very “sloppy” and with individual ears harvested showed that, at 30,000 plants per acre, there was a lot of ear size variability regardless of how much space plants had in the row (Figure 3). When we converted the data by dividing the yield per plant by the space that each plant occupied, there seemed to be a huge advantage to plants spaced closer in the row (Figure 4). Which is the accurate way to show such data? It is clear that we can show them in a way that makes precision seem to “pay” or, conversely, in a way that makes it look rather meaningless.

6. Uniformity of seed placement is important, to the extent that it affects uniformity of emergence. Uneven plant size early translates into yield loss. This means that efforts to place seed at uniform depth and into uniform soil conditions are likely to pay off. Whether this requires some added equipment or modification is not clear. Those who plant carefully into uniform soil conditions and at speeds within the range recommended by the manufacturer might well see little difference from adding seed formers or other devices to improve uniformity, while those who want to plant at high speeds and into soils with root balls and other types of interference may find some advantage in add-ons to help keep seed in uniform conditions.

7. Some who have had problems with shallower- or deeper-planted corn might advocate changing the planting depth, but reacting to problems in a previous year is often not very helpful in the current year. Planting 1.75 inches deep is a good target. Though uniformity of depth is not easy to measure, as a practical guide you shouldn’t be able to find seeds at depths more than about a half inch above the bottom of the seed furrow.

—Emerson Nafziger

REGIONAL REPORTS

Extension center educators, unit educators, and unit assistants in northern, west-central, east-central, and southern Illinois prepare regional reports to provide more localized insight into pest situations and crop conditions in Illinois. The reports will keep you up to date on situations in field and forage crops as they develop throughout the season. The regions have been defined broadly to include the agricultural statistics districts as designated by the Illinois Agricultural Statistics Service, with slight modifications:

- North (Northwest and Northeast districts, plus Stark and Marshall counties)
- West-central (West and West Southwestern districts, and Peoria, Woodford, Tazewell, Mason, Menard, and Logan counties from the Central district)
- East-central (East and East Southdwest districts [except Marion, Clay, Richland, and Lawrence counties], McLean, DeWitt, and Macon counties from the Central district)
- South (Southwest and Southeast districts, and Marion, Clay, Richland, and Lawrence counties from the East Southeast district)

We hope these reports will provide additional benefits for staying current as the season progresses.
Grain yield per plant, grams

Figure 3. Grain yield per plant in a corn stand thinned to create high plant spacing variability. The population was 30,000 plants per acre, and the standard deviation of plant spacing was 52 inches.

Grain yield per plant, “bu/A”

Figure 4. Data from Figure 3, calculated as “bushels per acre” by dividing the grain yield per plant by the amount of space each plant had in the row.

East-Central Illinois

Heavy rains have delayed much field work. Some limited tillage and fertilizer and herbicide applications have occurred. Only a couple of corn fields have been planted.

Several growers are still trying to get into fields for spring seedling of forages.

Some wheat fields are showing significant winter injury.

Northern Illinois

Field activity, though not widespread, was observed late last week throughout the region, including tillage, anhydrous ammonia application, preplant herbicide application, and oat forage seeding. Rainfall on Monday, April 13, halted field work; several observers recorded 0.4 to 0.6 inch of precipitation.

Wheat looks good for the most part, but growth has been slow this spring due to the cold temperatures. Some fields have small dead areas where ice stood during the winter or where the soil has been saturated for long periods.

Several extension educators have reported readily catching black cutworm moths last week, but the only reported “intense moth capture” to date occurred on April 10 at the Lee County trap location.

Southern Illinois

Two inches of rainfall during the past week has kept field work at a standstill. Wheat development ranges from Feekes 6 (one node visible) to Feekes 7 (two nodes visible) on the more advanced fields. Some early development of fungal disease can be found on the lowest leaves of some fields.

New growth on alfalfa is at 14 inches. By next week there should be adequate GDU accumulation for significant alfalfa weevil feeding in the most southern counties in the region, and field scouting should begin in earnest. Adequate GDU accumulation for egg hatch should be reached sometime next week in the counties along I-70 in the northern part of the region.

April 22 is Earth Day. Let’s not forget that, as crop producers, we should be the first and foremost stewards of the environment. Our livelihoods depend on it.

West-Central Illinois

Not much to report since last week, other than more rain. A few hardy souls got some corn planted the early part of last week, primarily on some of the better-drained ground in the bottoms along the Mississippi River near Hull (Pike and Adams counties), and in a few additional areas. Some anhydrous and dry fertilizer applications also took place on some of the drier soils. But the majority of producers are still (patiently) waiting for better weather. We’ve had a few reports of germinated sweet corn that was planted mid-March.

Alfalfa has been slow to grow, as have grass pastures.

The wheat crop is a mixed bag. Fields that were planted at or very near the fly-free date are tillered well. The late-sown wheat has yet to tiller.

Terry Behymer, Brown County, reported an intense capture of black cutworm moths on April 7–8.
Contributing Authors

Vince M. Davis, davisv@illinois.edu, 217-244-7497

Fabián Fernández, fernande@illinois.edu, 217-333-4426

Mike Gray, megray@illinois.edu, 217-333-6652

Aaron Hager, hager@illinois.edu, 217-333-4424

Emerson Nafziger, ednaf@illinois.edu, 217-333-4424

Kevin Steffey, ksteffey@illinois.edu, 217-333-6652