Insect Trapping Update: May 15

Cooperators around the state are monitoring black cutworm and true armyworm traps this spring.


Black Cutworm

Continued flights have occurred this last week, but at low levels overall. Reports of corn emergence have been trickling in and along with those reports are also those of black cutworm feeding. As a reminder, some management suggestions from Nick Seiter’s 2018 article (

  • Infestations are more likely in later planted corn, as delayed planting means larger cutworm larvae are present at earlier stages of corn development.
  • Black cutworm moths prefer to lay their eggs on grasses, not bare ground. Therefore, fields with grassy weeds present at or shortly before planting are more likely to experience damaging populations. Similarly, monitor fields closely if a grass cover crop (e.g., cereal rye) is terminated while corn is susceptible to cutworm damage (emergence to ~V5).
  • The economic threshold for black cutworm is 3% of plants cut with black cutworms still present in the field. Look for plants that look like they have been cut roughly with scissors close to the base (Fig. 1); plants with intact roots (Fig. 2) were most likely dug up by birds and do not represent cutworm damage. Remember, larvae (Fig. 1) do their feeding at night and hide in residue or just below the soil surface during the day, so you will have to do a little bit of digging near the base of the plant to find them.
  • Several Bt corn trait packages offer suppression of black cutworm, but these might be less effective under heavy infestations or against later stage larvae. Most pyrethroid insecticides labeled for use in corn will do an excellent job of controlling larvae as a rescue treatment; just remember that they only pay off when an economic threshold has been reached.

Projected potential cutting dates in Illinois based on black cutworm trap catches. Pinhole feeding in southwestern Illinois (photo courtesy of Kelli Bassett, Pioneer) and cut plant found in Hancock County (Stephanie Porter, Golden Harvest).


True Armyworm

Sporadic flights seen again this week. Numbers were overall low, with the exception of Bureau county. This is just a selection of sites to give you an idea regionally what is going on around Illinois. I have had reports of armyworm in wheat in southern Illinois – varying larval instars and densities.

True armyworm trap totals from selected sites in Illinois. Reports of armyworm in wheat of varying sizes and densities (Robert Bellm, Brase Farms).


Despite the cool temps and rain, insects are still out there and scouting will be key. Feel free to share field observations with us – kcook8@illinois.ed or

Wheat Insects – What to Watch for This Spring

Consider adding some insect scouting to your wheat management routine this spring if you are not doing so already. While damaging insect pest infestations are pretty sporadic in Illinois, missing one can be costly. The first step in managing these infestations is knowing what to look for.




There are several species of aphids that infest wheat in Illinois, and they can be difficult to tell apart without careful examination (the figure captions below provide some tips on how to identify the different species; note that aphids are tiny insects, and you will probably need a hand lens to distinguish them). The primary concern with aphids is their ability to transmit barley yellow dwarf virus (BYDV); however, high populations of aphids feeding on plants can reduce vigor, lead to wilting, and coat the plants in sticky “honeydew” and sooty mold. In addition, greenbug feeding introduces a toxin that can reduce yield through stunting of the plants.


Image of two bird cherry-oat aphids

Fig. 1. Bird cherry-oat aphid. Note the brown-ish coloration at the rear of the body and the overall round or “globular” shape compared with the other aphid species. Photo: Frank Peairs, Colorado State University,


image of an English grain aphid

Fig. 2. English grain aphid. This species has darkened cornicles (the “tail pipes” at the rear end of the body) and a narrower overall body shape. Photo: Kansas Department of Agriculture,


image of a greenbug aphid

Fig. 3. Greenbug (or greenbug aphid). Greenbugs can be recognized by the dark green stripe down the back of the body. Greenbugs are less common in Illinois wheat than the other two species, but they are more damaging at lower numbers due to a toxin contained in their saliva. Photo: Frank Peairs, Colorado State University,




Armyworms are a sporadic issue in wheat in Illinois, but under high pressure they can cause substantial damage. The species we see in the spring is often called the “true” armyworm to distinguish it from fall armyworm (which, as the name suggests, arrives later in the season) and several other species. The true armyworm caterpillar has a broad, lighter-colored stripe on either side of the body, a net-like pattern on its head, and dark bands on each proleg. Armyworms feed on leaves, resulting in a raggedy appearance. Leaf feeding itself generally does not have much of an impact unless it is severe. However, occasionally armyworm larvae clip seed heads when leaf material becomes scarce, and this can result in serious yield losses.


image of a true armyworm larva

Fig. 4. A true armyworm larvae. Note the light colored bands on the side, the net-like pattern on the head, and the dark bands on the prolegs. Photo: Frank Peairs, Colorado State University,


(Just a note: the images in this article are used under the terms of a Creative Commons Attribution License, and were obtained through, which is an excellent insect identification resource).

Keep watching the Bulletin for seasonal updates if and when we start to see issues pop up. Until then, happy scouting!


Author: Nick Seiter, Research Assistant Professor, Field Crop Entomology | 217.300.7199


Grape Colaspis in Corn and Soybean: a Pre-Season Primer

Grape colaspis is a common insect, but it only occasionally affects corn and soybean production in Illinois. However, 2018 was that rare year where “outbreak” levels of infestation occurred in parts of the state, resulting in stand reductions and, in some cases, replanting of damaged areas. Information can be tough to come by for an occasional pest like this one, but I will summarize what we know and what we should expect going forward.

Grape colaspis adult in a soybean trifoliate

Fig. 1. A grape colaspis adult peeking out of a soybean trifoliate. The adults resemble bean leaf beetles in size and shape, but have stripes along the back (on the “elytra” which are shield-like front wings that protect the beetle’s soft body). Larvae, which feed below ground and resemble tiny white grubs, are the damaging stage. (Photo: Nick Seiter)


Biology. Matt Montgomery provided some detail on the life cycle, identification, and habits of grape colaspis in a Bulletin article from 2003, which can be found here: (The date of the article gives you a rough idea of the last time we had widespread issues with this insect in Illinois). A couple of key points:

  • Adult females lay clutches of eggs in the soil in fields of soybean, alfalfa, and other legumes in June and July.
  • The larvae that hatch from these eggs feed on root hairs, gradually moving to larger sections of the roots.
  • When temperatures begin to cool in the fall, the larvae burrow down 8-10 inches into the soil profile, where they spend the winter.
  • When temperatures warm in the spring, the larvae move back up the soil profile and resume feeding on roots. High populations of larvae at this time can prune roots and lead to stand reduction.


Management. Plants with grape colaspis damage may appear wilted, stunted, or as if they have a nutrient deficiency from above the soil surface. The damage is often patchy and most pronounced on high/well drained portions of the field. Uprooting damaged plants will reveal the larvae, which resemble white grubs but are much smaller. While plants will usually overcome the initial damage, severe feeding can kill plants and reduce stands. Because egg laying occurs in soybean, alfalfa, and other legumes, the damage can occur in rotated corn or continuous soybean.


Control. Any chemical control measures for grape colaspis must be applied at planting. Insecticide seed treatments with many of the same active ingredients as those used in corn and soybean have been used successfully for grape colaspis control in rice in the southern U.S. However, because of the sporadic nature of this pest in corn and soybean, there are limited data available for at-plant control options such as insecticide seed treatments and soil insecticides in the Midwestern U.S. Consider these control options on fields that have a history of grape colaspis damage, referring to the label for correct use. Like many soil-dwelling insects, there are no viable rescue treatments for grape colaspis; once damage has occurred the only management decision is whether or not replanting is necessary on part or all of the field. (There are several resources available to examine the economics of this decision, including the IL Corn Replant Calculator which can be used to guide decisions during the season:


Remember, this insect is sporadic in Illinois; history suggests that issues in 2018 do not necessarily translate to another big year in 2019. Hopefully this one will pass us by this season, but learn to recognize this insect and its damage just in case.


Author: Nick Seiter, Research Assistant Professor, Field Crop Entomology | | 217.300.7199 | Twitter: @nick_seiter

Feedback sought on Pest Degree Day Calculator Upgrade

The Illinois Degree Day calculator has been available to Illinois producers since 2004. Hosted by the Illinois Climate Network (ICN), this pest management tool was developed to help aid producers in monitoring insect development throughout the growing season and aid in pest management decisions.

The calculator uses weather data from 19 network stations across Illinois to provide degree day accumulations and forecasts for 30 agricultural and invasive pests based on long-term averages. While this has been a great resource for many years, technology has changed, along with how information is disseminated.

Our main goal is to provide a calculator for priority pests for Illinois growers and deliver that information in way that is most useful and effective for them. In order to do that, we need your help. During February and March, we are collecting feedback from a short survey at The information we collect will be used to design new tools to better communicate with growers.

The current plan is to have the new tools available by the end of 2020. During this time, the pest degree day calculator will remain available at the WARM website (

What effect will cold temperatures have on pests and pathogens?

Nathan Kleczewski Research assistant Professor and Extension Field Crop Pathologist

Nick Seiter- Research Assistant Professor and Extension Field Crop Entomologist


Many in the Illinois agricultural community are wondering what effects the recent extreme cold might have on pests and pathogens. While it would be nice if the cold temperatures we are experiencing could help to reduce our potential for pest damage, past experience tells us that the most serious pests we deal with are unlikely to be impacted much by these conditions.

Many of the pathogens and insect pests that commonly affect field crops in Illinois are well adapted to survive our winter conditions.  In many cases, pathogens produce recalcitrant survival structures (e.g. cysts in soybean cyst nematode, oospores in Phytophthora, sclerotia in white mold).  These structures allow the pathogen to survive extreme conditions including cold, drought, and flooding. Different species of insects overwinter in different life stages, including eggs (for example, western corn rootworm), larvae (Japanese beetles), pupae (corn earworm, though they do not survive the winter in most of Illinois), or adults (stink bugs). The overwintering stage has characteristics that help these insects to survive the winter, either by adjusting its physiology to better survive the cold, seeking out an overwintering site that protects it (such as soil, tree bark, or leaf litter), or both. The overwintering sites that insects find mean that they are not experiencing the same temperatures that we are when we venture outside. Wind chill has little effect for this reason (even though it has a major, unpleasant effect on us).

Extreme cold temperatures can impact some insects and plant pathogens, particularly those that may not overwinter as well (e.g. powdery mildew).  When cold weather pushes into the Southern regions of the country it can push certain diseases, such as rusts, further south, delaying disease onset in Illinois and other regions further north. The same is true of migratory insects, such as black cutworm and fall armyworm, which do not usually overwinter in Illinois; colder temperatures during winter often delay the arrival of these insects, and may ultimately lead to lower numbers. The opposite is also true – warmer than normal temperatures during the winter can allow these migratory insects to become a problem earlier in the season.

Although cold temperatures may not impact most of the diseases we encounter in Illinois field crops, fluctuation between conditions of cold and warm may have a negative impact on some diseases.  Dormancy by fungi can be broken by environmental conditions such as higher temperatures.  This is similar to what occurs in plants, where warm weather may result in trees flushing out buds and flowers.  Consequently, the wide swings in temperature that we have experienced during the 2018/19 winter may negatively impact some diseases. While some insects (such as stink bugs) can also break dormancy during brief warm periods, many of our most serious pests will stay “hunkered down” until the spring and avoid these fluctuations. Unfortunately, insects and plant diseases are unlikely to suffer as much from the recent cold as we have. The best way to reduce the impact of insects and pathogens on those cold days is to stay inside, grab a hot cup of coffee, and curl up to the latest UI Extension recommendations or UI applied research results guide.

Field Performance of Seed Treatments and Soil Insecticides for Corn Rootworm Control

Authors: Nick Seiter and Joe Spencer

Producers across east-central Illinois have enjoyed low western corn rootworm pressure for several years, due to a combination of saturating rains during rootworm egg hatch and widespread use of Bt corn hybrids. Following a low point in the rootworm population in 2015, statewide monitoring of corn and soybean fields has documented a slow western corn rootworm population rebound in some areas.  Recent low corn pest abundance (combined with lower commodity prices) provides an opportunity to become reacquainted with rootworm monitoring and non-Bt options for their management. While relying on soil insecticide or a seed treatment to protect corn roots may not fit into every growers’ operation every year, rotating among different rootworm management tactics should be considered a part of the best management practices for corn rootworms in the transgenic era. Rotating between different rootworm management tactics and Bt modes-of-action is necessary because western corn rootworm populations are evolving resistance to the Bt proteins expressed in Bt corn hybrids. In addition, monitoring adult populations in fields that will be planted to corn the following year will help to assess the need for control (whether a Bt trait or an insecticide).

In 2018, we conducted a series of field trials to evaluate control options for corn rootworm. These trials were planted following a 2017 “trap crop” of late planted corn and pumpkins to artificially increase rootworm populations in the field. Root masses (5 per plot) were removed during the early reproductive stages (R1-R3), cleaned using pressure washers, and rated for corn rootworm damage using the 0-3 Node-Injury Scale developed by researchers at Iowa State (Oleson et al. 2005). The rootworm population at this location consisted almost entirely of western corn rootworm, and previous bioassay data indicated a high level of resistance to the “Cry3” Bt traits within the population. Note that additional information and data for these trials (as well as additional insect and disease management trials) are available in the recently published “Applied Research Results on Field Crop Pest and Disease Control,” available at the following link: In addition, readers are encouraged to consult “on Target” for summaries of applied research trials conducted by University of Illinois personnel from 2004-2014:

Seed Treatments. Seed treatments are nearly ubiquitous on seed corn planted across the Corn Belt.  In our trials, the seed treatments Poncho Votivo and Poncho Votivo 2.0 offered significant root protection from corn rootworm larvae compared to an untreated control (Table 1).  For many years, some corn hybrids have been marketed with seed treatments at what has been described as the ‘rootworm rate’.  These data indicate that at modest larval pressure (ca. 1.9 on the 0-3 Node Injury Score scale), these seed treatments provide some root protection; however, based on previous studies these treatments should not be relied upon alone for control under heavy rootworm pressure. Note that all hybrids used in this trial expressed Cry3Bb1 for root protection. The relatively high root pruning observed in the untreated plots illustrates that resistance to the “Cry3” proteins is an issue at this site.

Soil-Applied Insecticides.  We tested soil-applied insecticides with a non-Bt hybrid for rootworm control, and all insecticide materials tested in 2018 reduced injury from corn rootworm larval feeding compared with the untreated control. This trial was conducted under relatively low larval pressure (1.07 on the 0-3 node-injury scale in the untreated plots), and no distinctions among the different insecticides could be made.

Before commercialization of Bt corn hybrids, a soil-applied insecticide was one of the only options available to growers anticipating economic rootworm injury in continuous or rotated corn.  Over the years, soil-applied insecticides were regularly evaluated in University of Illinois Insect Management Trials (see previously linked “on Target” reports). They typically provided significant reductions in corn rootworm larval damage to corn roots compared to untreated controls.  Oftentimes, soil-applied insecticides provided root protection equivalent to, or approaching that provided by single trait Bt corn hybrids with similar yield results (see 2013 “on Target” report). Ultimately, Bt corn’s season-long root protection that was as good as or better than a soil-applied insecticide, reduced pesticide exposure, and simplified planting operations were powerful motivations that drove adoption of Bt corn. However, use of a granular or liquid soil-applied insecticide on a non-rootworm Bt corn hybrid remains a viable tactic to protect corn roots without the use of a Bt corn hybrid. If you are interested in using one of these products and have not done so in a while, now is a good time to verify that your application equipment is in good shape. Rotating corn hybrids that incorporate Bt traits with non-Bt corn treated with a soil-applied insecticide should be considered as a strategy to slow resistance evolution, especially in areas that are currently experiencing only moderate corn rootworm pressure.

Oleson, J. D., Y. Park, T. M. Nowatzki, and J. J. Tollefson. 2005. Node-injury scale to evaluate root injury by corn rootworms (Coleoptera: Chrysomelidae). Journal of Economic Entomology 98: 1-8.


Table 1. Mean (± standard error) node-injury ratings of corn rootworm larval feeding injury on corn hybrids expressing the Bt trait Cry3Bb1 treated with Poncho Votivo, Poncho Votivo 2.0, or Untreated at Urbana, IL in 2018.


Node-injury ratings

10 July (R1)

Untreated 1.83 ± 0.18 aa
Poncho Votivo 0.57 ± 0.06 b
Poncho Votivo 2.0 0.55 ± 0.10 b

a Means followed by the same letter within a column are not different based on the Fisher method of least significant difference (α = 0.05)


Table 2. Mean (± standard error) node-injury ratings of corn rootworm larval feeding injury on non-Bt corn treated with granular and liquid insecticides at planting at Urbana, IL in 2018.


Node-injury ratings

10 July (R1)

Untreated 1.07 ± 0.12 aa
Capture 3RIVE 3D (16 oz/a) 0.37 ± 0.07 b
Force CS (9.9 oz/a) 0.22 ± 0.05 b
Aztec 4.67G (52.3 oz/a) 0.25 ± 0.06 b
Ampex EZb (12 oz/a) 0.15 ± 0.02 b
Poncho 1.25 mg ai/seed 0.19 ± 0.03 b
Poncho 0.5 mg ai/seed 0.31 ± 0.07 b
Ampex EZb (8 oz/a) 0.13 ± 0.01 b

a Means followed by the same letter within a column are not different based on the Fisher method of least significant difference (α = 0.05)  b Note that Ampex EZ is not labeled for use in corn at the time of this publication


Nick Seiter, University of Illinois Department of Crop Sciences

Joe Spencer, University of Illinois Natural History Survey

Despite local Bt resistance, growers still have options

The development of resistance to Bt Cry toxins by the western corn rootworm is a growing concern, highlighted by the recent confirmation of field-evolved resistance to Cry34/35Ab1 in Iowa ( Across the Corn Belt there are western corn rootworm populations with resistance to multiple Bt Cry toxins expressed in Bt corn. In Illinois, Bt resistance can be found in western corn rootworms from both continuous and first-year cornfields; rotation-resistant populations are vulnerable to Bt resistance. Since the first report of western corn rootworm Bt resistance in 2011, resistance to each of the Bt toxins expressed in Bt corn hybrids (i.e. Cry3Bb1, mCry3A, eCry3.1Ab and Cry34/35Ab1) has been documented at multiple Corn Belt locations (Gassmann et al. 2016:, Zukoff et al. 2016: Repeated use of the same Bt trait(s) in the same continuous (or rotated) fields imposed strong selection for rootworm resistance to those traits. This problem is not limited to rootworms; Tabashnik and Carrière (2017) have recently documented examples of increasing Bt resistance around the globe (

The introduction of corn hybrids that expressed two different Bt toxins was an important innovation in Bt technology that offered a way to slow the development of resistance and manage rootworms already resistant to a Bt trait. Because these “pyramided” Bt corn hybrids expressed Bt proteins with two different modes of action, a larva feeding on a pyramid’s roots must have resistance to both Bt proteins to survive.  Thus, pyramided hybrids provided a “second line of defense” against western corn rootworms in areas where some Bt resistance may already be present.

Cross-resistance among the structurally similar “Cry3” family of Bt Cry proteins (Cry3Bb1, mCry3A, and eCry3.1Ab) has further complicated rootworm management (Gassmann et al. 2014: With cross-resistance, rootworms with resistance to one Cry3 toxin were also resistant to the other two. This significantly reduces grower options, as despite the availability of many different commercial Bt corn hybrids, there are functionally only two different Bt modes of action with activity against western corn rootworm beetles. Choosing an effective hybrid requires information about which traits work well against the rootworm populations in a particular field or area and information about which Bt Cry toxins are expressed in different Bt corn hybrids. Information about the Bt traits expressed in commercial Bt corn hybrids can be found in the “Handy Bt Trait Table” (

Though western corn rootworm Bt resistance is increasing across the Corn Belt, field efficacy trials and bioassays reveal that some susceptibility to one or more proteins remains in most populations.  Furthermore, a recent publication from University of Nebraska (Reinders et al. 2018:, showed that the level of resistance to a particular Bt protein(s) could vary from field-to-field even within a portion of a county. In east central Illinois, we have conducted a series of experiments to examine the susceptibility of local western corn rootworm populations to Bt traits.

Measuring local patterns of Bt susceptibility.

Local western corn rootworm populations have been periodically assessed for their susceptibility to the Cry toxins expressed in Bt corn hybrids.  Last spring, a variety of single trait-, pyramided- and non-Bt corn hybrids were planted for a Bt efficacy trial at the UI Agricultural and Biological Engineering (ABE) Farm in Urbana, Illinois.  Laboratory Bt resistance bioassays were also conducted using the offspring (larvae) of rootworm populations collected from the ABE farm during 2017.

Local field efficacy of Bt traits.  Bt corn hybrids expressing three of the four Bt toxins commercially available for corn rootworm management (Cry3Bb1, mCry3A, and Cry34/35Ab1; eCry3.1Ab Duracade®, a Cry3 toxin, was not tested) were evaluated as single trait hybrids and in pyramided hybrids with one other Bt protein (i.e. Cry34/35Ab1 + Cry3Bb1 proteins and Cry34/35Ab1 + mCry3A) (Table 1).


Table 1. Hybrid number and corn rootworm Bt trait(s) expressed in single- and pyramided Bt corn hybrids evaluated for node injury in 2018 ABE Farm Bt field efficacy trials.

aStandard commercial seed treatments were present on all hybrids. CRW: corn rootworm.


Local rootworm pressure has been low for several years. To assure significant western corn rootworm pressure for the efficacy trial, in 2017, the site was late-planted with corn and pumpkins to attract egg-laying adults. The 2018 trial was planted on May 2nd in a 6 x 6 grid of 8r x 9m plots. On July 18th, five roots were dug from each plot and evaluated for rootworm larval feeding injury using the Iowa State University 0-3 Node-Injury Scale (NIS)(Oleson et al. 2005:

Western corn rootworm larval pressure in the trial was only modest leading to a pattern of variable results. The roots of non-CRW Bt hybrids sustained nearly two full nodes of injury (NIS = 1.987 ± 0.335; mean ± SE) (Table 2) which was greater than injury to all of the Bt corn hybrids, except the Cry3Bb1 single trait hybrid. The injury to roots of the mCry3A-expressing single-trait hybrid was not significantly different from injury to the Cry3Bb1- or the Cry34/35Ab1-expressing single trait hybrids.  The lowest NIS (=best root protection) occurred on the two pyramided hybrids, though this was not significantly different from the NIS for the single trait Cry34/35Ab1-expressing hybrid.

While a significant contribution of Cry34/35Ab1 to better root protection is evident from these data, the level of root protection provided by Cry3 traits (i.e. Cry3Bb1- and mCry3A-expressing single trait hybrids) compared to unprotected roots (i.e. non-CRW Bt) would be unacceptable in a commercial setting. Unsatisfactory Cry3 toxin performance is hardly surprising, given Cry3 cross-resistance, prior local evidence of reduced Cry3 Bt toxin efficacy, and current bioassay data (below). In single trait hybirds, Cry3 traits are unlikely to meet root protection expectations.


Table 2. Node Injury Scores (NIS) for Bt corn hybrids from the field efficacy trial. There were n=5 roots evaluated per replicate and n=6 replicates per each of the six corn hybrids; n=180 total roots evaluated.

aAll hybrids also expressed Lepidopteran-specific Bt traits. b Data were Log10 (NIS + 0.5) transformed before ANOVA and comparison of Least Squares Means with Tukey HSD using JMP Pro 13; untransformed means are shown. NIS scores sharing the same letter are not significantly different at alpha <0.05.


The importance of the Cry34/35Ab1 Bt toxin can be highlighted by pooling the NIS data according to whether the Cry34/35Ab1 Bt toxin was or was not expressed in a Bt hybrid (regardless of Cry3Bb1 or mCry3A expression) (Table 3).  After a re-analysis, the pooled Cry34/35Ab1 (+) hybrids are found to experience significantly less root injury than the two Cry34/35Ab1 (-) hybrids or the non-Bt control.


Table 3. Node Injury Scores (NIS) for the field efficacy trial from Table 2, data were pooled according to Bt-corn hybrid Cry34/35Ab1 protein expression category. Five roots were evaluated per replicate and n=6 replicates per each of the six corn hybrids; n=180 total roots.

aData were Log10 (NIS + 0.5) transformed before ANOVA and comparison of Least Squares Means with Tukey HSD using JMP Pro 13; untransformed means are shown.


Western corn rootworm Bt resistance bioassays. Single-plant Bt resistance bioassays compared the survival of larvae from a suspected-Bt resistant population and a Bt-susceptible population from a USDA laboratory colony (Brookings, SD). Larval survival was measured using corn hybrids expressing single Bt toxins (Cry3Bb1, mCry3A, or Cry34/35Ab1) and their respective non-Bt near-isoline hybrids. The suspected-Bt resistant rootworm larvae were the offspring of adults collected from the ABE field during 2017. Because, these larvae were the siblings of those attacking the plants in the field efficacy trial, we expected similar results.

Corn hybrids were obtained from the respective trait licensees and greenhouse-grown singly in 1-liter cups. When plants reached the V5-V6 stage, they were each inoculated with n=10 newly-emerged larvae. Twelve cups were inoculated for each of the six treatments, for a total of n=72 cups per rootworm population. Inoculated cups incubated for 17d at 25°C before transfer to Berlese funnels to recover surviving larvae. The bioassay was replicated twice.


 Table 4. Mean proportion larval survival for western corn rootworm on the roots of Bt- and non-Bt isoline hybrids in single-plant Bt-resistance bioassays.

aANOVA was performed on Log10(proportion survival + 0.5) transformed data. Untransformed data are depicted; JMP Pro 13 (2013 SAS Institute) was used to perform analyses. Means sharing the same letter within a trait family do not differ significantly (P<0.05) based on least-squares means (Tukey HSD).


Survival of larvae from the suspected-resistant, Urbana population on Cry3Bb1- and mCry3A-expressing corn was significantly higher than the Bt-susceptible population. The Urbana population survived as well on the Cry3 hybrids as they did on the non-Bt isoline hybrids indicating that they were resistant and had little if any susceptibility to either of the Cry3 proteins. In contrast, survival of larvae from the same population on Cry34/35Ab1-expressing corn was low and did not differ from that of Bt-susceptible WCR populations indicating that the Urbana field population was susceptible to the Cry34/35Ab1 toxin.

Results from field efficacy trials and Bt-resistance bioassays suggest that the Urbana, Illinois western corn rootworm population is susceptible to the Cry34/35Ab1 toxin, but resistant, or nearly so, to the Cry3 toxins (i.e. Cry3Bb1 and mCry3A).  Based on these data, growers anticipating economic populations of western corn rootworm should select Bt corn hybrids (pyramided hybrids) that express the Cry34/35Ab1 toxin. Whenever possible, rotating to soybean (a recommended Best Management Practice or BMP) should also be a first choice when an economic population is anticipated. The Urbana population’s minimal susceptibility (only in the field efficacy trial) to Cry3 toxins was too low to prevent significant injury to single trait hybrids and did not add to the efficacy of the Cry34/35Ab1 toxin expressed in pyramided corn hybrids.

Conclusions. Local populations of western corn rootworm in east central Illinois are still mostly susceptible to Cry34/35Ab1, despite the recent confirmation of resistance to this toxin in Iowa. The efficacy of pyramided hybrids in our area is largely dependent on this toxin, as local populations are mostly resistant to the “Cry3” toxins.  Western corn rootworm abundance monitoring is the first step when initiating an integrated pest management approach to corn rootworm. Rotating with a non-Bt alternative (e.g. non-host soybeans, a seed treatment or liquid/granular soil-applied insecticide) rather than using a Bt hybrid in every field every year helps to preserve the efficacy of Bt traits. When a Bt hybrid is used, planting pyramided Bt corn hybrids that express Cry34/35Ab1 is also an appropriate response. Finally, when field-specific monitoring indicates that rootworm populations will be below economically damaging levels in continuous or rotated cornfields, forgoing rootworm control helps to prevent needless selection of Bt-resistant individuals.  Using pest monitoring to guide selection of the appropriate management techniques fosters long-term strategies that are justified by data and responsive to field-specific pest threats.

Given evidence for field-evolved resistance to Cry3 and/or Cry34/35Ab1 traits elsewhere in the Corn Belt, it is important to protect local Bt trait efficacy by adopting IPM-based approaches. Remember that local adoption of BMPs can help mitigate resistance in problem fields. When the next generation of rootworm protection products reach the market, the new RNAi-based mode of action is slated to be pyramided with existing Cry3Bb1 and Cry34/35Ab1 Bt traits in a product called “SmartStax®Pro”. Careful stewardship of current Bt traits is in the best interest of growers. Not only does it preserve the remaining management options, but it will help to prolong and reinforce the efficacy of new products.

Joe Spencer and Nick Seiter


Links to helpful scientific literature:

Gassmann, A.J., J.L. Petzold-Maxwell, R.S. Keweshan, and M.W. Dunbar. 2011. Field-evolved resistance to Bt maize by western corn rootworm. PLOS ONE 6:e22629.

Gassmann, A.J., J.L. Petzold-Maxwell, E.H. Clifton, M.W. Dunbar, A.M. Hoffmann, D.A. Ingber, and R.S. Keweshan. 2014. Field-evolved resistance by western corn rootworm to multiple Bacillus thuringiensis toxins in transgenic maize. PNAS, 111 (14):5141-5146.

Gassmann, A.J., R.B. Shrestha, S.R.K. Jakka, M.W. Dunbar, E.H. Clifton, A.R. Paolino, D.A. Ingber, B.W. French, K.E. Masloski, J.W. Dounda, and C.R. St. Clair. 2016. Evidence of Resistance to Cry34/35Ab1 corn by western corn rootworm (Coleoptera: Chrysomelidae): root injury in the field and larval survival in plant-based bioassays. J. Economic Entomology, 109(4): 1872–1880.

Oleson, J.D., Y.L. Park, T.M. Nowatzki, and J.J. Tollefson. 2005. Node-injury scale to evaluate root injury by corn rootworms (Coleoptera: Chrysomelidae). J. Economic Entomology, 98:1–8.

Reinders J.D., B.D. Hitt, W.W. Stroup, B.W. French, and L.J. Meinke. 2018. Spatial variation in western corn rootworm (Coleoptera: Chrysomelidae) susceptibility to Cry3 toxins in Nebraska. PLoS ONE 13(11): e0208266.

Tabashnik, B. and Y. Carriere. 2017. Surge in insect resistance to transgenic crops and prospects for sustainability. Nature Biotechnology. 35(10):926-935.

Zukoff, S.N., K.R. Ostlie, B. Potter, L.N. Meihls, A.L. Zukoff, L.French, M.R. Ellersieck, B.W. Wade French, and B.E. Hibbard. 2016. Multiple assays indicate varying levels of cross resistance in Cry3Bb1-selected field populations of the western corn rootworm to mCry3A, eCry3.1Ab, and Cry34/35Ab1. J. Economic Entomology, 109(3):1387-1398.

Dectes Stem Borer and Lodged Soybeans

Many soybean growers have had problems with lodging at harvest this year. The primary culprit for this (as for many of our woes this fall) was the extended period of unfavorable weather that we have suffered. However, in parts of southern Illinois damage by the dectes stem borer contributed to this problem.

The adult dectes stem borer (Figure 1) is a “long-horned” beetle that can often be found in soybean and on other plants. The adult female chews a hole into the surface of the plant (usually at the petiole), and lays her eggs in the pith. This often results in individual petioles wilting or falling completely off of the plant, which is usually the first sign of an infestation. Upon hatching, the larva (Figure 2) tunnels throughout the stem and feeds on the pith. As the plant nears maturity, the larva moves into the base of the stem where it will spend the winter. As awful as the bored-out stem of a soybean plant looks after being attacked by dectes stem borer (Figure 3), economic losses only occur if this damage leads to lodging. When preparing to overwinter, larvae will often girdle the base of the stem, causing the plant to break off and leading to harvest difficulties and reduced yield (Figure 4). This insect has one generation per year, with the adults usually emerging from soybean residue beginning in late June in Illinois to start the cycle again.

Adult dectes stem borer

Figure 1. An adult dectes stem borer at rest.


Larva of the dectes stem borer

Figure 2. A larva of the dectes stem borer removed from a soybean stem

Dectes stem borer larva in soybean stem

Figure 3. Damage to the inside of a soybean stem caused by a dectes stem borer larva

Soybean lodging caused by dectes stem borer

Figure 4. Lodged soybeans due to dectes stem borer feeding (Photo: Eric Alinger, Dupont Pioneer)

Insecticides are generally not recommended for control because the larvae are protected within the stem and the adults lay eggs over a long period of time in the summer (approximately mid-July through August in Illinois). While there appear to be some differences in varietal susceptibility, these differences are not well documented, and to my knowledge no soybean varieties have been characterized as resistant to dectes stem borer. However, there are some cultural management options available to producers:

  • Monitoring. While there is no economic threshold established, finding adults at higher than average numbers will be the first indication of a problem. Note wilting or broken-off petioles, and split soybean stems toward the end of the season to gauge the level of infestation. In addition, examine soybean stems in lodged areas to determine if dectes stem borer was part of the problem. If you have never done so before and you are in southern Illinois, the results might surprise you.
  • Timely harvest. Obviously, we would harvest on time every year in every field if we could. However, if you note fields that are infested with dectes stem borer, put those fields as early as possible on the priority list to reduce the potential for lodging.
  • Soybean stubble. Destroying or burying soybean stubble in the fall reduces dectes numbers locally, but the adults readily move from their overwintering sites to surrounding fields. Areas with a lot of no-till production are likely to have more issues with dectes stem borer.
  • Alternate hosts. Dectes stem borers feed on several other host plants, including sunflowers and giant ragweed. Areas with high populations of these plants could have higher populations of dectes stem borers as well. (As if you needed another reason to kill giant ragweed).


Nick Seiter (217) 300-7199

Research Assistant Professor, Field Crop Entomology

University of Illinois Department of Crop Sciences

And the Survey Says…

Figure 1. What pests were most prevalent in Illinois corn and soybeans in 2018? The survey says…


For those that attended Agronomy Day this past August, the title and above graphic may look familiar. As field and research season winds down, we’re able to finish collecting and summarizing data. One of our biggest summer projects is the annual corn and soybean survey. While some of that information was shared at Agronomy Day, the complete results are summarized below.

As a recap, this survey has been carried out across the state for several years (2011, 2013–2018). In 2018, 40 counties representing all nine crop reporting districts were surveyed, with five corn and five soybean fields surveyed in each county. These surveys have been conducted with the goal of estimating densities of common insect pests. The estimates provided in this article should not be considered a substitute for scouting individual fields and making informed pest management decisions—even areas of the state that appear to be at low risk could have contained fields with high densities of a given insect pest.

Figure 2. Average number of Japanese beetles per 100 sweeps.

As I’ve talked with growers throughout the summer, in their opinion, the top insect pest of 2018 is the Japanese beetle. And both the survey results and I agree.

Within the soybean fields surveyed, 100 sweeps were performed on both the exterior of the field (outer 2 rows) and interior (at least 12 rows beyond the field edge) using a 38-cm diameter sweep net. The insects collected in sweep samples were identified and counted to provide an estimate of the number of insects per 100 sweeps (Tables 1 and 2).

Japanese beetle populations were higher statewide compared to 2017. Western Illinois saw record numbers last year and populations stayed high in 2018. The highest Japanese beetle populations remained in western Illinois, but numbers increased dramatically in the northwest as well (from 54 beetles per 100 sweeps to 175).

Table 1. Average number of insects per 100 sweeps on the edge of the field.


Table 2. Average number of insects per 100 sweeps on the interior of the field.

Western corn rootworms are always a concern, but populations have been very low in recent years. In addition to sweep samples in soybeans, cornfields were sampled for western corn rootworm by counting the number of beetles on 20 consecutive plants beyond the end rows of a given field—a beetle per plant average was calculated for each field. A mild winter followed by favorable conditions at egg hatch and adult emergence helped the small populations from 2016 gain some traction in 2017 (Table 3). However, per plant averages were lower in all districts again in 2018. Populations were variable. Many fields had low to nonexistent populations, but there were fields with higher numbers. It is important to remember, fields are randomly selected. We have no knowledge of insect management strategies that are used – soil insecticides, transgenics, or foliar applications.

Table 3 Mean number of western corn rootworm beetles per plant in corn by crop reporting district and year.

As we’ve seen repeatedly, grape colaspis populations are highly variable. Despite having reports of sporadic larval injury in the spring, adult populations were lower in 2018 compared to last year. We did see more stinkbugs as well as green cloverworms and soybean loopers statewide. While the majority of the stink bugs are green and brown, we did not pick up any of the southern species like red banded and redshouldered stink bugs in the survey. Brown marmorated stink bug was found for the first time in soybean field sweeps in several counties, though.


Funding for survey activities was provided by the USDA National Institute of Food and Agriculture. This survey would not be possible without the hard work and contributions of many people. I would like to thank Illinois Cooperative Agriculture Pest Survey Program interns Evan Cropek, Hannah Hires, Calli Robinson, and Cale Sementi as well as Department of Crop Science intern Matt Mote.